Определение крутящего момента и тяговой силы



Министерство образования, науки и молодежной политики Нижегородской области

Государственное бюджетное профессиональное образовательное учреждение

«Нижегородский техникум городского хозяйства и предпринимательства»

 

                    Доклад по теме:

«Тяговые испытания, тяговая и тормозная динамичность»

 

 

 

Подготовил обучающий группы 17 ТОР

Логунов.Г.П

Проверил: преподаватель

Рысев А.А.

 

г. Нижний Новгород

                                                                                                                                                         

Испытания автомобиля на динамичность

Во время испытаний автомобиля на динамичность определяют минимальную устойчивую и максимальную скорости движения, максимальное ускорение, время и путь разгона и выбега, а также тяговую силу на его колесах.

Динамические испытания автомобиля делятся на дорожные и стендовые.

Дорожные испытания наиболее полно отражают условия эксплуатации, но точность их невысока. На стендах создаются стабильные условия испытаний, применяется современное оборудование и аппаратура, позволяющая автоматически обрабатывать результаты испытаний.

Стендовые испытания можно проводить в любое время года. Однако на стенах трудно, а в некоторых случаях невозможно воспроизвести реальные условия эксплуатации. Поэтому дорожные испытания дополняют стендовые и наоборот.

Перед проведением испытаний определяют массовые показатели автомобиля и коэффициенты сопротивления качению и сцепления шин с дорогой. Непосредственно перед началом испытаний все агрегаты автомобиля должны быть прогреты (пробег в течение 0,5…1 часа), а в период испытаний температура охлаждающей жидкости и масла должна поддерживаться в установленных пределах. Температура воздуха должна быть от +5 до +25 ˚С при скорости ветра не более 3 м/с. Испытания проводят на ровном горизонтальном участке дороги с асфальтобетонным покрытием при полной нагрузке.

При испытаниях автомобилей определяются такие показатели, как скоростные характеристики:

· разгон-выбег на высшей и предшествующих передачах и при движении по дороге с переменным продольным профилем;

· максимальная и условная максимальная скорости;

· время разгона на участках пути длиной 400 и 1000 м;

· время разгона до заданной скорости.

Скоростная характеристика определяется на участке длиной 13…15 км. Участок пути с переменным продольным профилем должен содержать подъем и спуск длиной 500…700 м с уклоном 4…5 %.

Разгон автомобиля при определении характеристики разгон-выбег проводится до наибольшей скорости на пути 2000 м. Максимальная скорость определяется на высшей передаче при полной подаче топлива.

Условная максимальная скорость определяется при разгоне автомобиля с места как средняя скорость прохождения последних

400 м участка пути длиной 2000 м. По характеристике разгон-выбег определяют время разгона на участках пути 400 и 1000 м, а также время разгона до заданной скорости.

Минимальную устойчивую скорость устанавливают на двух последовательных участках движения по 100 м каждый, с промежутком между ними 200…300 м. Установление постоянной скорости движения должно обеспечиваться до въезда автомобиля на первый участок. На промежуточном участке скорость увеличивается до 20…25 км/ч путем резкого увеличения подачи топлива. Перед входом на второй участок скорость автомобиля опять снижается.

При движении автомобиля с прямой передачей производят также испытания на приемистость автомобиля путем резкого разгона с начальной скоростью 15 км/ч до скорости, составляющей 80 % от максимальной на данной передаче.

Аппаратура для дорожных испытаний автомобилей

В настоящее время при испытании автомобиля на динамичность широко применяется цифровая аппаратура.

Измерение пройденного пути, скорости и ускорения автомобиля

 

Для получения информации о скорости, ускорении, пройденном пути и времени движения автомобиля используют «пятое» измерительное колесо (рис. 1), которое легко может быть установлено на любом автомобиле. Измерительное колесо 3 соединяется с автомобилем с помощью платформы 6, дышла 2 и узла, обеспечивающего его вращение вокруг вертикальной оси 1 при повороте автомобиля. Пружина 4, прикрепленная к кронштейну 5, прижимает колесо к дороге. На валу этого колеса устанавливается фотоэлектрический или индуктивный датчик. Сигнал от датчика поступает в цифровую регистрирующую аппаратуру (рис. 2), где в нормализаторе 1 он преобразуется в сигнал прямоугольной формы.

 

 

В счетчике 3 регистрируется пройденный путь через подсчет импульсов в двоичной системе счисления, а для перехода в десятичную систему счисления двоичный код переводится в дешифратор 6 и поступает на цифровой индикатор 7.

Формирование временных интервалов осуществляет таймер 18, для чего через равные промежутки времени производится счет импульсов, соответствующих пройденному пути. Импульсы открывают ключ 2 на равные промежутки времени и через равные интервалы времени. За время, в течение которого ключ 2 открыт, через него на счетчик 4 проходят импульсы датчика. Чем больше скорость автомобиля, тем большее число импульсов проходит в единицу времени.

Аналогично регистрации пути цифровой индикатор 8 скорости получает информацию о числе импульсов через дешифратор 5. Так как показания индикатора скорости непрерывно меняются, то для измерения скорости движения в каждый последующий промежуток времени информация, накопленная в счетчике за предыдущее время, должна быть стерта. Эта задача выполняется передним фронтом импульса, который формируется таймером 18, подключенным также к счетчику 4 и дешифратору 5.

Для определения ускорения информация о скорости поступает от счетчика 4 на два запоминающих устройства 14 и 15 через ключ 16. Управление ключом осуществляется через триггер 17 от таймера 18. На двух выходах триггера формируются управляющие сигналы со сдвигом по времени на половину периода.

Первый выход триггера 17 и первый управляющий вход ключа 16 передают информацию о скорости за первый промежуток времени в запоминающее устройство 15. Сравнивающее устройство 13 сравнивает коды скоростей в устройствах 14 и 15 и выдает информацию об ускорении между двумя измерениями. На цифровой индикатор 9 информация об ускорении поступает в дешифратор 12, который выполняет те же функции, то и другие дешифраторы.

Для получения графиков изменения параметров движения используют цифровые преобразователи 10 и 11, которые подключаются к цифровой аппаратуре. С их помощью выходные импульсные сигналы преобразуются в аналоговые – непрерывно меняющееся напряжение. Это напряжение используется для регистрации графиков движения на осциллографах, самописцах или магнитографах.

На современных испытательных стендах для измерения скорости часто используют датчики, работа которых основана на эффекте Холла. В этом случае на «пятом» колесе крепится стальной диск с радиальными вырезами, а на дышле - датчик. Выступы диска, проходя мимо головки датчика, формируют в нем электромагнитный сигнал, который считывается обрабатывающими устройствами.

Определение крутящего момента и тяговой силы

Для определения тяговых характеристик изменяют крутящий момент на полуоси ведущего моста, а тяговую силу определяют касательным путем, поскольку измерение касательной силы в зоне контакта колеса с дорогой практически невозможно.

Под действием момента полуось закручивается на угол пропорциональный приложенному крутящему моменту. Крутильная деформация измеряется различными датчиками (тензометрическими, индуктивными и др.).

Перспективным является магнитоанизотропный метод определения напряженного состояния деталей, поскольку оно происходит без непосредственного контакта с ними. Этот метод основан на том, что при взаимно перпендикулярном расположении двух катушек индуктивности и подачи на одну из них переменного тока, во второй катушке ЭДС не наводится. Если возникает деформация магнитного потока возбуждения какими-либо внешними причинами (оси катушек перестают быть перпендикулярными), то во второй катушке появляется ЭДС пропорциональная этой деформации.

Для измерения крутящего момента на полуоси моста автомобиля устанавливают магнитоанизотропный датчик 1 (рис. 3). Датчик закрепляется в отверстии балки моста с зазором между его торцом и полуосью.

 

Датчик представляет собой два П-образных магнитопровода, которые расположены взаимно перпендикулярно. На магнитопроводы намотаны катушки индуктивности, но лишь одна из них соединена с источником 6 переменного тока. При прохождении через нее тока создается магнитное поле, которое распространяется по магнитопроводу 5 и замыкается через металл полуоси 3, преодолевая сопротивление зазора между магнитопроводом и полуосью.

При приложении к полуоси крутящего момента она деформируется, при этом деформируется кристаллическая решетка материала в поверхностном слое полуоси, что приводит к искажению направления магнитных силовых линий потока возбуждения от катушки магнитопровода 4. Это в свою очередь вызывает возникновение в катушке магнитопровода 4 слабой ЭДС, которая пропорциональна деформации магнитных силовых линий, то есть приложенному крутящему моменту.

Возникающий сигнал ЭДС направляется к усилителю 7, выход которого соединен через фазовый детектор 8 с индикатором 9. С него считываются показания. Фазовый детектор 8 служит для преобразования сигнала переменного тока в сигнал постоянный, который позволяет определять не только величину крутящего момента, но и направление его приложения.

 

 


Дата добавления: 2020-04-25; просмотров: 161; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!