ГАЗОВАЯ ЗАЩИТА ТРАНСФОРМАТОРА



Обмотки большинства трансформаторов помещены в бак, залитый маслом, которое используется как для изо­ляции обмоток, так и для их охлаждения. При возник­новении внутри бака электрической дуги к. з., а также при перегреве обмоток масло разлагается, что сопро­вождается выделением газа. Это явление и использует­ся для создания газовой защиты.

Защита выполняется с помощью газового реле, уста­новленного в трубе, соединяющей бак трансформатора с расширителем. Газовое реле состоит из кожуха и двух расположенных внутри него поплавков, снабженных ртутными контактами, замыкающимися при изменении их положения. Оба поплавка шарнирно укреплены на вертикальной стойке. Один из них расположен в верхней части, а второй — в центральной. При слабом газообра­зовании (газ скапливается в верхней частей кожуха ре­ле), а также при понижении уровня масла верхний по­плавок опускается, что приводит к замыканию его кон­тактов. При бурном газообразовании потоки масла устремляются в расширитель, что приводит к замыка­нию контактов обоих поплавков. .Контакты верхнего по­плавка носят название сигнальных, а нижнего — основ­ных контактов газового реле.

Движение масла через газовое реле, вызванное к. з. внутри бака трансформатора, обычно является толчко­образным: Поэтому замыкание основных контактов мо­жет быть ненадежным (перемежающимся), что учиты­вается, при выполнении схемы газовой защиты транс­форматора.

На рис. 3 изображена схема газовой защиты на пе­ременном оперативном токе. Выходное промежуточное реле защиты РП самоудерживается до отключения вы­ключателя 1В со стороны питания.

Поскольку газовая защита может сработать ложно, например, вследствие выхода воздуха из бака трансфор­матора после доливки свежего масла, в схеме защиты предусмотрены переключающее устройство ПУ и резис­тор R, с помощью которых действие газовой защиты мо­жет быть переведено на сигнал.

Достоинствами газовой защиты являются простота выполнения, срабатывание при всех видах повреждения внутри бака трансформатора, высокая чувствительность.

 

Рис. 3. Принципиальная схема газовой защиту трансформатора

Однако газовая защита, естественно, не срабаты­вает при повреждениях вне бака трансформатора. По­этому она не может быть единственной основной защи­той трансформатора.

Трансформаторы мощностью 1 МВ*А и более обыч­но поставляются комплектно с газовой защитой.

 

ПРОДОЛЬНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ТОКОВАЯ ЗАЩИТА ТРАНСФОРМАТОРА

На трансформаторах мощностью более 7,5 МВ*А в качестве основной защиты устанавливается продольная дифференциальная токовая защита. Принцип действия защиты аналогичен защите линий элек­тропередачи. Однако особенности трансфор­матора как объекта защиты приводят к тому, что Iнб в дифференциальной защите трансформатора значитель­но больше, чем в дифференциальных защитах других элементов системы электроснабжения. Основными фак­торами, которые необходимо учитывать при выполнении дифференциальной защиты трансформатора, являются следующие.

Бросок тока намагничивания при включении трансформатора под напря­жение или при восстановлении напря­жения после отключения внешнего к. з. Ток намагничивания трансформатора (рис. 4, а) Iнам= I1п— I11п в нормальном режиме работы невелик и составляет 2—3% номинального тока Iт,ном. После отклю­чения внешнего к. з., как и при включении трансформа­тора под напряжение, возникающий бросок тока намаг­ничивания может превышать номинальный ток /т,ном в 6—8 раз

 

Рис. 4. Изменение потока и тока намагничивания при включении трансформатора под напряжение.

 

а — поясняющая схема; б —изменение тока намагничивания; в — изменения напряжения и магнитного потока; г — характеристика намагничивания.

Значение тока при броске зависит от момента вклю­чения трансформатора под напряжение. Наибольшее зна­чение бросок тока намагничивания имеет при включении трансформатора в момент, когда мгновенное значение напряжения U равно нулю (рис. 4, в, г). В этом случае магнитный поток Фt в сердечнике трансформатора в на­чальный период времени содержит большую апериодиче­скую составляющую Фa и превышает при переходном процессе установившееся значение Фуст практически в 2 раза. Поскольку зависимость Ф = f(Iнам) нелинейна, то iнам увеличивается по отношению к установившемуся зна­чению в сотни раз, но остается обычно меньшим максимальных переходных токов внешних (сквозных) к. з. Бросок тока намагничивания может содержать большую апериодическую слагающую, а также значительный про­цент высших гармоник (прежде всего второй). Затуха­ние броска происходит медленнее, чем тока к. з. В ре­зультате кривая броска тока намагничивания iнам,бр (рис. 4, б) может оказаться смещенной по одну сторону оси времени.

Указанные характерные особенности броска тока намагничива­ния используются для обеспечения отстроенности дифференциаль­ной токовой защиты трансформатора, поскольку при отстройке за­щиты по току срабатывания она имеет очень низкую защитоспособность, а при отстройке по времени — теряет быстроту сраба­тывания.

Схемы соединения обмоток трансфор­матора. Если обмотки высшего и низшего напряже­ния трансформатора соединены не по схеме Y/Y -12, а по какой-то другой схеме, то между токами фаз транс­форматора на сторонах высшего и низшего напряжения существует фазовый сдвиг. Так, при широко распростра­ненной схеме соединения обмоток трансформатораY/D-11 фазовый сдвиг составляет ÐI1пI11п = 30 эл. град. Поэтому при одинаковых схемах соединения вторичных обмоток групп 1ТТ и 2ТТ трансформаторов тока (на сто­ронах высшего и низшего напряжения) в дифференци­альной цепи защиты при внешнем к. з, проходит значи­тельный ток, равный примерно половине вторичного тока ТТ при внешнем к. з. •

Поэтому схемы соединения групп 1ТТ и 2ТТ должны быть такими, чтобы указанный сдвиг по фазе отеутствовал (ÐI1пI11п = 0). При этом возможны два варианта: вторичные обмотки группы 1ТТ соединяются в треуголь­ник, а группы 2ТТ — в звезду или вторичные обмотки группы 2ТТ — в треугольник, а 1ТТ — в звезду. Схема соединения обмоток ТТ в первом случае ясна из рис. 5. Предпочтение всегда отдается первому варианту, так как соединение в треугольник вторичных обмоток ТТ, установленных со стороны звезды силового трансфор­матора, предотвращает возможное неправильное сраба­тывание дифференциальной защиты при внешних одно­фазных к. з. (когда нейтраль трансформатора заземле­на), поскольку соединение в треугольник предотвраща­ет попадание токов нулевой последовательности в реле защиты. При соединении вторичных обмоток 1ТТ в треугольник токи в цепи циркуляции от 1ТТ (I’) в ÖЗ раз больше вторичных токов 1ТТ (I). Поэтому коэффици­ент трансформации 1ТТ выбирается равным IтYномÖЗ/5, где IтYном — номинальный ток трансформатора со сто­роны обмотки силового трансформатора, соединенной в звезду.

Рис. 5. Схема соединения ТТ дифференциальной токовой защиты трансформатора Y/D-11 и векторные диаграммы.

 

 

Несоответствие коэффициентов транс­формации ТТ расчетным значениям. Для обеспечения равенства токов в цепи циркуляции должно соблюдаться соотношение соответственно для трансформаторов с соединением об­моток по схеме Y/Y и Y/D. Выпускаемые промышлен­ностью трансформаторы тока имеют дискретную шкалу коэффициентов трансформации. Поэтому в общем слу­чае I’11в¹I’ что вызывает дополнительный ток небаланса в реле защиты.

 Регулирование коэффициента транс­формации трансформатора. При регулирова­нии коэффициента трансформации трансформатора со­отношение между первичными, а следовательно, и меж­ду вторичными токами 1ТТ и 2ТТ изменяется, что также приводит к появлению тока небаланса в дифференциаль­ной цепи защиты. Различия типов ТТ, их нагрузок и кратностей токов внешнего к. з. Трансформаторы тока ТТ дифференциальной защиты трансформатора устанавливаются на сторонах трансформатора, имеющих различное напряжение, поэтому они не могут быть оди­наковыми. Кроме того, схемы соединения вторичных об­моток ТТ также различны, а следовательно, трансфор­маторы тока имеют разную нагрузку. Различны у раз­ных групп ТТ (особенно в случае трехобмоточного трансформатора) и кратности тока внешнего к.з. по от­ношению к их номинальным токам. Все это обусловли­вает разные погрешности' у разных групп ТТ, что при­водит к появлению повышенных токов небаланса в диф­ференциальной цепи защиты при внешних к. з.

Рассмотренные выше факторы обусловливают приме­нение защит различной сложности и с использованием разных способов обеспечения их защитоспособности и отстроенности. В простейшем случае в качестве РТД (рис, 5) используют обычное реле тока без замедле­ния (такую защиту называют дифференциальной отсеч­кой). Однако защитоспособность ее мала из-за того, что защита получается весьма грубой. Для повышения чув­ствительности применяют реле и схемы, основные из ко­торых (реле с промежуточными насыщающимися транс­форматорами в дифференциальной цепи, реле с торможением) были рассмотрены применительно к про­дольной дифференциальной защите линий. В ряде слу­чаев применяются и более сложные принципы (особен­но для обеспечения отстроенности защиты от бросков тока намагничивания трансформатора).

Наибольший (расчетный) ток небаланса в дифферен­циальной цепи защиты может иметь место при включе­нии трансформатора под напряжение или при внешнем к. з. Поэтому ток небаланса должен определяться в обо­их случаях.

При включении трансформатора под напряжение действующее значение броска тока намагничивания Iбр.нам в первый период равно (6—8)Iт,ном. где Iт,ном— номинальный ток трансформатора.

При внешнем к. з., сопровождающемся прохождени­ем через ТТ защиты наибольших токов к. з., ток неба­ланса:

Iнб = I'нб+ I"нб + I"’нб, (1)

где I'нбI"нб I"’нб — токи небаланса, обусловленные соответ­ственно погрешностями ТТ, регулированием коэффици­ента трансформации трансформатора и неравенством то­ков в цепи циркуляции от различных групп ТТ. Раскрывая выражения для отдельных составляющих тока небаланса (1), можно записать:

Iнб,расч = (kоднkаперe + DU*рег + Dfвыр)Iк,ве,max (2)

 

где kодн=1—коэффициент однотипности; kапер — коэф­фициент, учитывающий наличие апериодической состав­ляющей в первичном токе ТТ при внешнем к. з.; e=0,1 —допустимая относительная погрешность ТТ; DU*рег=DUрег /Uном — относительный диапазон изменения на­пряжения на вторичной стороне трансформатора при ре­гулировании коэффициента трансформации под нагруз­кой устройством РПН; Dfвыр = (I’-I’11в)/ I’ — относитель­ное значение тока небаланса в дифференциальной цепи защиты, обусловленное несоответствием расчетных и фактических коэффициентов трансформации ТТ.

Значения коэффициента kапер в (2) и коэффициен­та, учитывающего отстройку от броска тока намагни­чивания,, выбираются разными в зависимости от типа применяемого РТД. Так, для дифференциальной отсечки ток срабатывания определяется как:

 

Iс,з = kотсIбр,нам;(3)

Iс,з = kотсIнб,расч.(4)

При этом в (4) kотс» 2, а выражение (3) с учетом некоторого затухания переходного значения Iбр,нам в течение собственного времени срабатывания электроме­ханического реле принимает вид:

Iс,з = (3.5¸4.5) Iт,ном (5)

и, как правило, является определяющим. Ток срабаты­вания реле дифференциальной токовой отсечки

Ic,p = Iс,зÖ3/K1TT, (6)

если Iс,з отнесен к стороне Y трансформатора, где вто­ричные обмотки 1ТТ соединены в треугольник. Диффе­ренциальная отсечка считается приемлемой, если при двухфазном к. з. на выводах низшего напряжения транс­форматора kч >= 2. Несмотря на низкую чувствительность дифференциальной отсечки ее достоинство заключается в обеспечении быстроты срабатывания при наибольших кратностях тока к. з.

При использовании реле с насыщающимися промежу­точными трансформаторами РНТ выбор тока срабаты­вания защиты Iс,з производится по выражениям;

 

Iс,з = (1 ¸ 1,3I)т,ном (7)

Iс,з = kотс(I’нб + I”нб) (8)

В (8) неучет I”нб объясняется возможностью ском­пенсировать эту составляющую (в первом приближении) с помощью промежуточного насыщающегося трансфор­матора тока ПНТТ с несколькими первичными обмотка­ми (рис. 5,5), когда для предотвращения попадания в реле защиты тока небаланса, обусловленного неравен­ством токов I’11в и I’ в цепи циркуляции, производится выравнивание м. д. с. первичных обмоток w1, w2 проме­жуточных трансформаторов тока так, что I’ w1» I’11в w2, т. е. Eв,т »0 и Iр»0.

Кроме того, в (8) при расчете I’нб значение коэф­фициента kапер принимается равным единице.

Рис. 5. Схема включения реле РНТ в дифференциальной токовой защите трансформатора

Существуют специальные реле дифференциальной защиты серии РНТ, содержащие максимальное реле тока, включенное на вторичную обмотку ПНТТ. Они ха­рактеризуются постоянной м. д. с. срабатывания (Fc,p = const) Принципиальная схема дифференциальной защиты трансформатора с РНТ (в однолинейном изображении) представлена на рис. 5

Следует отметить, что определение составляющей расчетного тока небаланса I”нб обусловленной регулированием напряжения защищаемого трансформатора, и расчетных чисел витков обмоток промежуточных на­сыщающихся трансформаторов тока реле защиты произ­водится с учетом одинакового максимального регулиро­вания ±DUmax в обе стороны по отношению к среднему положению переключателя РПН, принимаемого в каче­стве расчетного. Такой учет регулирования напряжения соответствует определению оптимальной уставки защи­ты только при условии независимости сопротивления трансформатора и тока к. з. от положения переключа­теля РПН.

Для повышения чувствительности дифференциальной токовой защиты трансформатора предусматривают более эффективную (по сравнению с защитой с РНТ) отстрой­ку от броска тока намагничивания трансформатора, ис­пользуя: несинусоидальность броска тока намагничива­ния; наличие в нем апериодической слагающей; наличие провалов (ниже заданного уровня) в кривой тока Iнам,пер. В настоящее-время желательнона мощных трансформаторах устанавливать защиту с током срабатывания (0,2—0,3)Iт,ном. Дифференциальные защиты, применяе­мые в эксплуатации, можно разделить на три группы: с токовыми реле; с реле РНТ; с реле с торможением.

Наибольший ток срабатывания имеют защиты первой группы (дифференциальные токовые отсечки). Ток срабатывания защит второй группы значительно меньше. Наиболее распространенной разновидностью таких защит является уже рассмотренная защита с применением промежуточных насыщающихся ТТ в дифференци­альной цепи. Недостатком этой защиты является, небольшое замед­ление из-за наличия некоторой апериодической слагающей в то­ке к. з.

Еще меньший ток срабатывания могут иметь зашиты третьей группы.

В настоящее время выпускается полупроводниковая дифференциальная токовая защита типа ДЗТ-21 , ток срабатывания которой равен примерно 0,3Iт,ном.

 


Дата добавления: 2020-04-25; просмотров: 159; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!