Транспортные РНК, строение и функциональный механизм.



тРНК — рибонуклеиновая кислота, функцией которой является транспортировка аминокислот к месту синтеза белка. тРНК также принимают непосредственное участие в наращивании полипептидной цепи, присоединяясь — будучи в комплексе с аминокислотой — к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса.

Для каждой аминокислоты существует своя тРНК.

тРНК является одноцепочечной РНК, однако в функциональной форме имеет конформацию «клеверного листа». Аминокислота ковалентно присоединяется к 3'-концу молекулы с помощью специфичного для каждого типа тРНК фермента аминоацил-тРНК-синтетазы. На участке C находится антикодон, соответствующий аминокислоте.

На 3'-конце молекулы всегда находятся четыре неспаренных нуклеотида, причем три из них – это обязательно ССА. 5'- и 3'-концы цепи РНК образуют акцепторный стебель. Цепи удерживаются вместе благодаря комплементарному спариванию семи нуклеотидов 5'-конца с семью нуклеотидами, находящимися вблизи 3'-конца.

У всех молекул имеется шпилька TC, обозначаемая так потому что она содержит два необычных остатка: рибо-тимидин (Т) и псевдоуридин. Шпилька состоит из двухцепочечного стебля из пяти спаренных оснований, включая пару G-C, и петли длиной семь нуклеотидов. Тринуклеотид ТС всегда расположен в одном и том же месте петли.

В антикодоновой шпильке стебель всегда представлен семью спаренными основаниями. Триплет, комплементарный родственному кодону,– антикодон – находится в петле, состоящей из семи нуклеотидов. С 5'-конца антикодон фланкируют инвариантный остаток урацила и модифицированный цитозин, а к его 3'-концу примыкает модифицированный пурин, как правило аденин.

 Еще одна шпилька состоит из стебля длиной три-четыре пары нуклеотидов и петли варьирующего размера, часто содержащей урацил в восстановленной форме – дигидроурацил (DU). Наиболее сильно варьируют нуклеотидные последовательности стеблей, число нуклеотидов между антикодоновым стеблем и стеблем ТС (вариа-бельная петля), а также размер петли и локализация остатков дигидроурацила в DU-петле.

Изменение нуклеотидной последовательности ДНК. Генные мутации.

Генные мутации - нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков.

Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации в соматических клетках наследуются только дочерними клетками, образовавшимися путем митоза, и такие мутации называют соматическими.

Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом.

Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре РНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.

Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, делении, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто - и к образованию измененного полипептида.

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипические не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидноклеточная анемия.

Хромосомные и генные мутации оказывают разнообразные воздействия на организм.

Генная мутация может привести к тому, что в определенном локусе окажется несколько аллелей. Это увеличивает как гетерозиготность данной популяции, так и ее генофонд, и ведет к усилению внутрипопуляционной изменчивости. Перетасовка генов как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться вследствие «усреднения».

Большинство генных мутаций рецессивны по отношению к «нормальному» аллели, который, успешно выдержав отбор на протяжении многих поколений, достиг генетического равновесия с остальным генотипом. Будучи рецессивными, мутантные аллели могут оставаться в популяции в течение многих поколений, пока не окажутся в гомозиготном состоянии и проявятся в фенотипе. Время от времени могут возникать и доминантные мутантные аллели, которые немедленно дают фенотипический эффект.


Дата добавления: 2020-04-25; просмотров: 141; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!