Функция и эволюция иридесцентной окраски



Биологический смысл структурной окраски разнообразен: это и камуфляж, помогающий скрываться от хищников или оставаться незаметным для жертвы при охоте, и коммуникативный сигнал, позволяющий привлекать партнеров для спаривания или отпугивать соперников, и терморегуляция за счет контроля количества поглощаемых через поверхность тела фотонов. Растениями иридесценция используется для привлечения насекомых-опылителей, а также фруктоядных животных, помогающих распространять семена. Также структуры, которые избирательно отражают или рассеивают свет, могут быть полезны для оптимизации спектра лучей, поглощаемых листьями при фотосинтезе. По-видимому, сходную функцию выполняет структурная окраска мантии у гигантских двустворчатых моллюсков тридакн (род Tridacna, см. рис. 5), которые значительную часть органики получают от симбиотических водорослей рода Symbiodinium (A. L. Holt et al., 2014. Photosymbiotic giant clams are transformers of solar flux).

Рис. 5. Иридесценция у гигантских тридакн (Tridacna gigas). Иллюстрация с сайта pinterest.com

Вместе с тем в некоторых случаях иридесценция, по-видимому, возникает просто как следствие эволюции каких-то свойств, не связанных с оптическими функциями: например, структурированная поверхность может приобретать водоотталкивающие свойства и при этом создавать эффект иридесценции. То же можно предположить и по поводу переливов на тонких прозрачных крылышках стрекоз — иридесценция здесь возникает по тому же механизму, что и переливы в тонкой пленке мыльного пузыря или в луже с разлитым бензином.

Полезность и достаточно высокая вероятность получения структурной окраски вполне очевидна, с учетом того, как много раз она возникала у самых разных организмов. В обширном обзоре, посвященном явлению иридесценции у жуков, приводится филогенетическое дерево (рис. 6), которое впечатляет многократностью и спектром механизмов структурной окраски в пределах одного лишь этого отряда (A. E. Seago et al., 2009. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera)).

Рис. 6. Филогенетическое дерево отряда жуков с отмеченными событиями возникновения структурной окраски. Треугольники, квадратики и кружки отмечают иридесценции по механизму дифракционной решетки, многослойного отражателя и трехмерного фотонного кристалла соответственно. Рисунок из статьи A. E. Seago et al., 2009. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera)

Обратимые изменения структурного цвета: причины и механизмы

Некоторые животные способны изменять цвет, в том числе и определяемый структурно. Иногда эти изменения необратимы и зависят от возраста, но особенно интересны случаи обратимого изменения цвета, которые происходят в ответ на некоторые события во внешней среде. Реакция такого типа может быть пассивной — как следствие непосредственного влияния тех или иных параметров среды на физические параметры иридесцирующих структур. Например, жук-геркулес (Dynastes hercules, рис. 7) имеет зеленовато-рыжий цвет при обычной влажности, однако если влажность воздуха превышает 80%, окраска меняется на черную из-за заполнения влагой воздушных полостей в структуре хитинового покрова надкрыльев (M. Rassart et al., 2008. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules).

Рис. 7. Переменчивая структурная окраска жуков. Вверху: жук-геркулес (Dynastes hercules); его окраска меняется с зеленовато-оранжевой на черную при повышенной влажности. Фото из статьи M. Rassart et al., 2008. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules. Внизу слева: жуки-черепашки рода Charidotella (цифрами 1–4 помечены фотографии одной и той же особи в разные моменты времени). Их окраска меняется с золотой на красную при различных стрессовых воздействиях. Рядом отображена общая схема, объясняющая механизм перемены окраски у продемонстрированных видов жуков. Фото с сайта pinterest.com, схема из статьи H. Fudouzi, 2011. Tunable structural color in organisms and photonic materials for design of bioinspired materials

Жуки-черепашки рода Charidotella тоже имеют переменчивую окраску. Однако в этом случае механизм изменения цвета активный, то есть зависит от физиологического контроля (рис. 7, нижняя левая часть рисунка). В обычном состоянии они сверкают золотом. Но если им становится холодно или голодно, или если их потревожить, блеск исчезает, а ярко-желтый оттенок сменяется оранжевым, и затем красным, у некоторых видов — еще и с черными точками. Оказалось, дело в том, что в обычном состоянии полости микроструктуры хитинового покрова их надкрыльев заполнены жидкостью (гемолимфой). При этом надкрылья отражают свет подобно зеркалу, с иридесценцией в желтой области спектра. Но при стрессе происходит отток жидкости из полостей, и они заполняются воздухом (к сожалению, пока не совсем ясно, как именно это происходит), при этом надкрылья перестают действовать как отражатели и становятся просто прозрачными. Сквозь них становится видна красная окраска брюшка жука (она может быть равномерной или нести «рисунок»). В данном случае смена окраски, по-видимому, зависит от нейрогуморальных сигналов, возникающих в ответ на стресс (J. P. Vigneron et al., 2007. Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae)).

Самые известные мастера по изменению цвета, это, пожалуй, головоногие моллюски (к ним относятся осьминоги, кальмары и каракатицы (рис. 8)) и хамелеоны (семейство Chamaeleonidae, фото в самом верху). И здесь снова не обошлось без структурного цвета. Рассмотрим эти случаи подробнее.

Рис. 8. Хамелеон (на фото в самом начале статьи) и каракатица — короли цвета в мире животных. Фото с сайта justingilligan.photoshelter.com

Механизм изменения цвета, который используют хамелеоны (рис. 9), был расшифрован в 2015 году (J. Teyssier et al., 2015. Photonic crystals cause active colour change in chameleons). В коже хамелеонов обнаружено 3 слоя пигментных клеток. Верхний слой — хроматофоры, содержит черные, красные и желтые пигменты. Под ним располагается два слоя клеток-иридофоров, содержащих кристаллы гуанина. В верхнем из двух слоев иридофоров кристаллы мелкие, они располагаются в форме правильной решетки и создают эффект волновой интерференции. От близости расположения кристаллов в решетке зависит, какой длины лучи интерферируют положительно и отражаются наиболее интенсивно. Отраженные лучи, проходя через выше расположенные хроматофоры, способны создать богатую гамму оттенков, плавно сменяющих друг друга. Самый нижний слой иридофоров содержит более крупные кристаллы гуанина, расположенные менее регулярно. От этих клеток зависит уровень поглощения или отражения инфракрасных лучей кожей хамелеона. Таким образом хроматофоры, по-видимому, участвуют в терморегуляции животного.

Рис. 9. Строение кожи и механизм изменения цвета у хамелеона (семейство Chamaeleonidae). А — изменение цвета самцов от зеленого к красному при переходе из спокойного в возбужденное состояние. Б — поперечный срез кожи хамелеона; S-irid. — верхний слой иридофоров с мелкими кристаллами гуанина, D-irid. — нижний слой иридофоров с крупными кристаллами. В и Г — структура решетки кристаллов в иридофорах, излучающих в коротковолновой (синей) и длинноволновой (красной) областях спектра. Д — кристаллы гуанина в D-иридофорах. Иллюстрация из статьи J. Teyssier et al., 2015. Photonic crystals cause active colour change in chameleons

В организме хамелеона существует и система контроля окрашивания. Кристаллы гуанина связаны с микротрубочками цитоскелета иридофоров, и именно перестройки в цитоскелете в ответ на изменения гормонального фона при возбуждении самца и приводят к смене цветовой гаммы отражаемого света. О некоторых интересных деталях этого исследования рассказывается в видео.

Механизм изменения цвета головоногих моллюсков раскрывается в статье D. G. DeMartini et al., 2013. Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes. В коже этих животных также имеется поверхностный слой с хроматофорами, содержащими желтые, красные и коричнево-черные пигменты, а под ним расположен слой, содержащий иридофоры и лейкофоры. Иридофоры создают интерференцию для узкого спектра волн, а лейкофоры интенсивно отражают полный спектр, создавая визуально белую окраску. Опять же, видимая окраска тела животного создается за счет комбинирования структурного и химического цвета. Принципиальное сходство механизмов достаточно очевидно.

Между тем, мы здесь сталкиваемся с одним из удивительных случаев конвергентного появления сложных адаптаций. Головоногие развили способность к изменению окраски кожи независимо и на иной биохимической базе, нежели хамелеоны, о чем свидетельствует ряд важных отличий.

Во-первых, отражающая наноструктура формируется у осьминогов, кальмаров и каракатиц не из кристаллов гуанина, как у хамелеонов, а из складок цитоплазматической мембраны клеток-иридофоров, в которых находятся специфичные для головоногих моллюсков белки рефлектины (см. reflectin). Лейкофоры содержат те же рефлектины, но складок на их мембранах не формируется, так что отраженный ими свет просто рассеивается во всех направлениях. Изменение длины волны отражаемого иридофорами света происходит при ковалентном присоединении фосфатных групп к рефлектинам. Эта модификация меняет конформацию и растворимость этих белков, что в свою очередь вызывает изменение частоты складок клеточной мембраны, а следовательно, меняется и светоотражение.

Вторая особенность кожи головоногих моллюсков — наличие специальных хроматофорных органов, которык не встречаются в других группах живых организмов. Каждый хроматофорный орган имеет диаметр до нескольких миллиметров в расправленном состоянии и состоит из большого числа клеток, содержащих один тип пигмента. Площадь поверхности хроматофорного органа может меняться благодаря окружающим его концентрическим и радиальным пучкам мышечных волокон (рис. 10). При сокращении мышечного кольца площадь поверхности хроматофора может уменьшаться в сотни раз (см. видео). У хамелеонов и других позвоночных пигмент либо концентрируется в центре пигментной клетки, либо распределяется по всей ее цитоплазме, тем самым обеспечивая уменьшение или увеличение выраженности окрашивания соответствующего участка кожи.

Рис. 10. Структура кожи и механизм изменения цвета у головоногих моллюсков на примере кальмара Doryteuthis opalescens. АГ — кожа кальмара в разных состояниях. На фото А хорошо видны мышцы, окружающие «сжатый» хроматофор. При сокращении этих мышц хроматофоры расправляются и формируют цветные пятна. На Б и В видна разнообразная окраска кожи, создаваемая нижележащим слоем иридофоров. На Г показана белая окраска, создаваемая лейкофорами. Д — схема прохождения света через хроматофорный слой кожи и отражения в нижнем слое кожи (с иридофорами и лейкофорами) в двух разных состояниях. Е — структура поверхности клеток иридофоров, видимая в электронном микроскопе у самцов (вверху) и самок (внизу). Ж — участки тела кальмаров (самца и самок), у самок отмечены участки, где иридесценция наиболее яркая. AД — иллюстрации с сайта informationdisplay.org; Е, Ж — иллюстрации из статьи D. G. DeMartini et al., 2013. Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes

Система регуляции окраски кожи у головоногих моллюсков устроена сложнее, чем у хамелеонов. Центральная нервная система в ней играет более существенную роль, обеспечивая гораздо более тонкие и разнообразные реакции на сигналы внешней среды. По-видимому, определенную роль играет также и автономная реакция кожи на внешнее окружение. Было доказано, что клетки кожи головоногих экспрессируют родопсин и обладают способностью к фоторецепции и автономным адаптивным реакциям на визуальные стимулы (A. C. N. Kingston et al., 2015. An Unexpected Diversity of Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii). Впрочем, фоточувствительные хроматофоры и иридофоры, экспрессирующие белки-опсины и способные к автономным реакциям, известны и среди рыб, в том числе у голубого неона и радужной форели (см., например, A. Kasai and N. Oshima, 2006. Light-sensitive Motile Iridophores and Visual Pigments in the Neon Tetra, Paracheirodon innesi).


Дата добавления: 2019-11-16; просмотров: 279; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!