Современная классификация и номенклатура ферментов.



БХ 5 Занятие «Общие свойства ферментов»

Химическая природа ферментов, их сходство и различия с неорганическими катализаторами.

Ферменты могут иметь все 4 уровня структурной организации: первичную, вторичную, третичную и четвертичную. Большинство ферментов имеют четвертичную структуру.

По химической природе фермент могут быть белками простыми (ферменты протеины) и сложными (ферменты протеиды).

Каталитическая функция ферментов определяется наличием одного или нескольких активных центров. Активный центр – это участок в пространственного структуре фермента, с которым связывается субстрат и подвергается химическому превращению. Число активных центров может быть равно числу субъединиц в четвертичной структуре фермента, т.е. сколько субъединиц (протомеров), столько активных центров.

В активном центре условно выделяют два участка:

- контактный (якорный или субстратный), отвечающий за специфичность связывания субстрата (узнавание);

- каталитический,  где происходит химическое превращение субстрата после его связывание (сначала фермент узнает субстрат, притягивает его, затем субстрат располагается в этом активном центре.

Скорость ферментативной реакции определяется количеством вещества (субстрата), которое превращается в единицу времени. Скорость является мерой способности фермента катализировать реакцию и обозначается как активность фермента.

Скорость ферментативной реакции зависит от:

1. концентрации субстрата;

2. концентрации фермента;

3. реакции характера рН-среды;

4. температуры

Зависимость скорости ферментативной реакции от температуры.

В определенном ограниченном интервале температур скорость ферментативной реакции увеличивается с ростом температуры. Повышение скорости реакции по мере приближения к оптимальной температуре (от 0 до 40°С) объясняется увеличением кинетической энергии реагирующих молекул. При дальнейшем увеличении температуры кинетическая энергия молекулы фермента становиться достаточной для разрыва связей, поддерживающих вторичную, третичную и четвертичную структуру фермента в нативном состоянии. Это приводит к тепловой денатурации фермента. При низкой температуре происходит обратимая инактивация фермента, т.к. наблюдаются

незначительные изменения конформации активного центра фермента.Фермент имеет белковую природу, поэтому температура на него, влияет также как на белок (повышении температуры приводит к денатурации).

Отличия ферментов от неорганических катализаторов. Общие свойства ферментов и неорганических катализаторов. Специфичность действия ферментов, локализация в растительной клетке

Отличия:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.

2. Ферменты обладают высокой специфичностью к субстрату.

3. Ферменты по своей химической природе белки, катализаторы - неорганика.

4. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.

5. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.

6. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

Сходства

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции

Абзимы и рибозимы, их свойства и особенности.

Ферменты – биологические катализаторы белковой природы (от греч. enzyme – в дрожжах или от лат. fermentatio – брожение). В конце прошлого века появились сведения о каталитических антителах (абзимы) и РНК (рибозимы).

Идея W.Jencks о способности белков-антител катализировать химические реакции была подтверждена в конце 80-х годов прошлого века. Были введены термины «каталитические антитела» или «абзимы». В настоящее время известны несколько классов химических реакций, катализируемых антителами: ацилтрансферазные, изомеразные, бимолекулярной ассоциации и окислительно-восстановительные.

Каталитические РНК (рибозимы) достаточно широко представлены в природе и играют важную роль в эволюции живых организмов, поскольку они могут обеспечивать репродукцию и процессинг РНК без участия белков-ферментов. В частности, рибозимы участвуют в удалении неинформативных интронов из пре-м-РНК, на этапе синтеза белков путем созревания тРНК с помощью рибонуклеазы Р РНК, а также в процессе саморепликации вирусного РНК генома (патогенные вирусы для растений и человека). Ранее неоднократно сообщалось, что синтез белка в рибосомах зависит от уровня рРНК. Активность рибозимов может контролироваться антибиотиками, что открывает новую страницу в профилактике и лечении вирусных заболеваний, включая вакцинацию.

Для выделения ферментов используют методы препаративной химии белков в специальных щадящих условиях (низкая температура, отсутствие эффектов необратимой денатурации). Оптимальным способом выделения ряда ферментов является биоспецифичная аффинная хроматография. Из более 3800 ферментов, включенных в список, ¾ выделены и очищены, у 500 ферментов изучена первичная структура и охарактеризованы гены и только у десятков из них постулирована третичная структура.

Современная классификация и номенклатура ферментов.

Современные классификация и номенклатура ферментов были разработаны Комиссией по ферментам Международного биохимического союза и утверждены на V Международном биохимическом конгрессе в 1961 г. в Москве. Согласно Международной классификации, ферменты делят на шесть главных классов, в каждом из которых несколько подклассов: 1) оксидоредуктазы; 2) трансферазы; 3) гидролазы; 4) лиазы; 5) изомеразы; 6) лигазы (синтетазы).

Оксидоредуктазы- ферменты, катализирующие с участием двух субстратов окислительно-восстановительные реакции, лежащие в основе биологического окисления. Систематические названия их составляют по форме «донор: акцептор оксидоредуктаза». Например, лактат: НАД+ оксидоредуктаза для лактатдегидрогеназы (ЛДГ). Различают следующие основные оксидоредуктазы: аэробные дегидро-геназы или оксидазы, катализирующие перенос протонов (электронов) непосредственно на кислород; анаэробные дегидрогеназы, ускоряющие перенос протонов (электронов) на промежуточный субстрат, но не на кислород; цитохромы, катализирующие перенос только электронов. К этому классу относят также гемсодержащие ферменты каталазу и пероксидазу, катализирующие реакции с участием перекиси водорода.

Трансферазы. К классу трансфераз относят ферменты, катализирующие реакции межмолекулярного переноса различных атомов, групп атомов и радикалов. Наименование их составляется по форме «донор: транспортируемая группа – трансфераза». Различают трансферазы, катализирующие перенос одноуглеродных остатков, ацильных, гликозильных, альдегидных или кетонных, нуклеотидных остатков, азотистых групп, остатков фосфорной и серной кислот и др. Например: метил- и формилтрансферазы, ацетилтрансферазы, амино-трансферазы, фосфотрансферазы и др.

Гидролазы. В класс гидролаз входит большая группа ферментов, катализирующих расщепление внутримолекулярных связей органических веществ при участии молекулы воды. Наименование их составляют по форме «субстрат-гидролаза». К ним относятся: зстеразы – ферменты, катализирующие реакции гидролиза и синтеза сложных эфиров; гликозидазы, ускоряющие разрыв гликозидных связей; фосфатазы и пептидгидролазы, катализирующие гидролиз фосфоангидридных и пептидных связей; ами-дазы, ускоряющие разрыв амидных связей, отличных от пептидных, и др.

Лиазы. К классу лиаз относят ферменты, катализирующие разрыв связей С—О, С—С, С—N и других, а также обратимые реакции отщепления различных групп от субстратов не гидролитическим путем. Эти реакции сопровождаются образованием двойной связи или присоединением групп к месту разрыва двойной связи. Ферменты обозначают термином «субстрат-лиазы». Например, фумарат-гидратаза (систематическое название «L-малат-гидролаза») катализирует обратимое отщепление молекулы воды от яблочной кислоты с образованием фумаровой кислоты. В эту же группу входят декарбоксилазы (карбокси-лиазы), амидин-лиазы и др.

Изомеразы. К классу изомераз относят ферменты, катализирующие взаимопревращения оптических и геометрических изомеров. Систематическое название их составляют с учетом типа реакции: «субстрат – цис-транс-изомераза». Если изомеризация включает внутримолекулярный перенос группы, фермент получает название «мутаза».

К этому же классу относят рацемазы и эпимеразы, действующие на амино- и оксикислоты, углеводы и их производные; внутримолекулярные оксидоредуктазы, катализирующие взаимопревращения альдоз и кетоз; внутримолекулярные трансферазы, переносящие ацильные, фосфорильные и другие группы, и т.д.

Лигазы (синтетазы). К классу лигаз относят ферменты, катализирующие синтез органических веществ из двух исходных молекул с использованием энергии распада АТФ (или другого нуклеозидтрифосфата). Систематическое название их составляют по форме «X : Y лигаза», где X и Y обозначают исходные вещества. В качестве примера можно назвать L-глутамат: аммиак лигазу (рекомендуемое сокращенное название «глутаминсинтета-за»), при участии которой из глутаминовой кислоты и аммиака в присутствии АТФ синтезируется глутамин.

1. Систематическое название – согласно современной классификации. Часто такое название длинно и сложно для использования, поэтому как производное систематического названия у многих ферментов имеется одно или несколько рабочих названий.

2. Тривиальное название – название, сложившееся исторически, например, пепсин, трипсин, папаин, бромелайн, химозин. Для некоторых ферментов (чаще для гидролаз) к названию субстрата добавляется окончание "-аза" – инвертаза, уреаза, амилаза, лактаза, липаза. Тем не менее и у таких ферментов имеется систематическое название.

Принципы номенклатуры ферментов.  В настоящее время существует три подхода к формированию названий ферментов. В соответствии с ними выделяют следующие типы номенклатуры: тривиальная (самая старая система); рабочая — удобна в употреблении, очень часто используется в учебной литературе; систематическая (или научная) — наиболее подробно и точно характеризует механизм действия фермента, но слишком сложна для повседневного употребления. Систематическая и рабочая номенклатуры ферментов имеют общую черту, которая заключается в присоединении к концу любого названия суффикса "аза". Последний является своего рода "визитной карточкой" энзимов, выделяющей их из ряда других групп биологических соединений.Существует еще одна система составления наименований, основанная на строении фермента. Номенклатура в таком случае делает акцент не на тип химической реакции, а на пространственную структуру молекулы.

Кроме собственно названия частью номенклатуры энзимов является их индексация, согласно которой каждому энзиму соответствует свой классификационный номер. В базах данных ферментов обычно указываются их шифр, рабочее и научное названия, а также схема химической реакции. Современные принципы построения номенклатуры ферментов основаны на трех характеристиках: особенности осуществляемой энзимом химической реакции; класс фермента; субстрат, к которому применяется каталитическая активность. Особенности раскрытия этих пунктов зависят от типа номенклатуры (рабочая или систематическая) и подкласса фермента, к которому они применяются. Тривиальная номенклатура Тривиальная номенклатура ферментов появилась в самом начале развития энзимологии. В то время названия энзимам давали первооткрыватели. Поэтому данная номенклатура иначе называется исторической.В основе тривиальных названий лежат произвольные признаки, связанные с особенностью действия фермента, но в них не содержится сведений о субстрате и типе химических реакций. Такие названия значительно короче рабочих и систематических.Тривиальные наименования обычно отражают какую-то особенность действия фермента. Например, название энзима "лизоцим" отражает способность данного белка лизировать бактериальные клетки.Классическими примерами тривиальной номенклатуры являются пепсин, трипсин, ренин, хемотрипсин, тромбин и другие. Рациональная номенклатура Рациональная номенклатура ферментов стала первым шагом к разработке единого принципа формирования названий энзимов. Она была разработана в 1898 году Е. Дюкло и базировалась на комбинировании названия субстрата с суффиксом "аза".Так, фермент, катализирующий гидролиз мочевины, именовался уреазой, расщепляющий жиры — липазой и т. д.Названия холоферментов (молекулярных комплексов белковой части сложных энзимов с кофактором) строились на основании природы кофермента

Рабочая номенклатура. Получила такое название за удобство в повседневном использовании, так как содержит основную информацию о механизме действия энзима при сохранении относительной краткости наименований.Рабочая номенклатура ферментов основана на сочетании химической природы субстрата с типом катализируемой реакции (ДНК-лигаза, лактатдегидрогеназа, фосфоглюкомутаза, аденилатциклаза, РНК-полимераза).Иногда в качестве рабочих названий используют рациональные наименования (уреаза, нуклеаза) или сокращенные систематические. Например, сложное составное название "пептидил-пролил-цис-транс-изомераза" заменяется на упрощенное "пептидилпролилизомераза" с более коротким и слитным написанием. Систематическая номенклатура ферментов Так же как и рабочая, основана на характеристике субстрата и химической реакции, однако данные параметры раскрываются гораздо точнее и подробнее, с указанием таких вещей, как: вещество, выступающее в качестве субстрата; природа донора и акцептора; название подкласса фермента; описание сути химической реакции. Последний пункт подразумевает уточняющую информацию (природа переносимой группы, тип изомеризации и т. д.).Не для всех энзимов указывается полный набор вышеперечисленных характеристик. Каждому классу ферментов соответствует своя формула составления систематических названий.


Дата добавления: 2019-11-16; просмотров: 6034; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!