Эукариотический геном. Особенности строения



Особенности строения бактериального генома:

Бактериальный геном прокариотов представлен генетическими элементами, обеспечивающими репликативную функцию – репликонами. Для бактериальной клетки это – хромосома и плазмиды. Чаще всего они имеют кольцевую форму, хотя возможно и линейное строение молекул-носителей ДНК.

Геномы эукариотов и бактерий значительно различаются по количеству генов и, соответственно, размеру – от нескольких тысяч у бактерий до миллиардов пар оснований у эукариотов, в том числе человека. Геномы вирусов и бактерий представляют класс компактных геномов, не превышающих нескольких миллионов пар оснований.

Геном прокариотов представляет собой бактериальную хромосому и плазмиды, содержащих наследственную информацию, которая хранится как определенная очередность нуклеотидов ДНК. Это, в свою очередь, определяет порядок расположения аминокислот в белке бактериальной клетки. Каждому белку бактериальной клетки соответствует участок ДНК, характеризующийся конечным числом и порядком расположения нуклеотидов.

Прокариоты не имеют отчетливой ядерной полости для размещения там своей ДНК. Плазматическая мембрана охватывает единственную цитоплазматическую полость, содержащую ДНК, РНК, белки и большое количество маленьких молекул, необходимых для жизни клетки. В электронном микроскопе это внутреннее содержимое клетки выглядит как матрикс с изменяющейся текстурой без видимых признаков какой-либо организованной внутренней структуры.

Большинство доядерных клеток несет в себе очень мало лишнего багажа: их геномы маленькие и компактные, а гены плотно упакованы и между ними находится минимальное количество регуляторной ДНК. Малый размер генома позволяет относительно легко определить полную последовательность ДНК.

 

Основу генетического аппарата кишечной палочки составляет бактериальная хромосома, входящая в состав нуклеоида - ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы. Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Длина бактериальной хромосомы составляет примерно 4,7 млн. нуклеотидных пар (п.н.), или ~ 1,6 мм. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название OriC). Бактериальная хромосома удваивается перед делением клетки, и сестринские копии распределяются по дочерним клеткам с помощью мезосомы. Репликация ДНК идет в две стороны от точки OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны. ген вирусный полипротеин

Одна бактериальная хромосома содержит до 1000 известных генов. Обычно это гены "домашнего хозяйства", то есть необходимые для поддержания жизнедеятельности клетки.

Способы изучения бактериального генома

 Выявление фенотипической изменчивости (модификации).

При посеве Proteus mirabilis на питательный агар вырастают колонии протея, окруженные зоной `роения'. При пересеве колоний петлей на поверхность питательного агара с 1% сухой желчью зоны роения исчезают, а при пересеве на обычный питательный агар все колонии вновь окружены зоной роения.

Определение Col -плазмид (колициногенных факторов).

Исследуемые культуры E. coli засевают методом укола в питательный агар в чашку Петри (по 7-8 уколов на 1 чашку). Посевы инкубируют при 37 ° С сутки и на внутреннюю поверхность чашки помещают кусочек ваты, смоченный хлороформом, в парах которого бактерии погибают. Затем поверхность агара равномерно заливают 3 мл расплавленного и остуженного до 45° С полужидкого (0,7%) питательного агара, смешанного с 0,1 мл 4-часовой бульонной индикаторной культуры (наиболее чувствительной к данному типу колицина). Результат учитывают через 18-24 ч инкубации при 37 ° С: вокруг посевов культур, продуцирующих колицины, появляются зоны подавления роста индикаторного штамма.

Определение колицинотипа.

В чашку Петри в питательный агар засевают эталонные штаммы бактерий с известным колицинотипом и инкубируют при 37 ° С сутки, после чего бактерии убивают в парах хлороформа. По поверхности агара равномерно распределяют 3 мл расплавленного и остуженного полужидкого агара, смешанного с 0,1 мл 4-часовой бульонной культуры E. coli неизвестного колицинотипа. Результаты учитывают через 18-24 ч. Если колицинотип индикаторной культуры и исследуемого штамма совпадут, то зоны подавления роста вокруг эталонного штамма не будет.

Тест перераспределения для выявления спонтанности мутаций.

В две чашки Петри с питательным агаром вносят по 0,1 мл суточной культуры E. coli М17 и распределяют равномерно по поверхности питательной среды. Через 6 ч инкубации при 37° С в одной из чашек перераспределяют шпателем выросшие микроколонии. Через 24 ч из каждой чашки культуры пересевают методом отпечатков на поверхность питательного агара с рифампицином. Через 24 ч инкубации учитывают результат: на поверхности среды с рифампицином в чашке без перераспределения выросли единичные колонии рифампицинрезистентных мутантов, а в чашке с перераспределением выросли более многочисленные (в десятки - сотни раз) колонии антибиотикоустойчивых мутантов.

Данный опыт показывает, что антибиотикоустойчивые мутанты возникли спонтанно, до контакта бактерий с селективным агентом - рифампицином. Уже через 6 ч на среде без антибиотика появляются микроколонии антибиотикоустойчивых мутантов. Благодаря перераспределению бактерии мутанты из этих микроколоний распространяются по всей поверхности среды и после посева отпечатками на среду с антибиотиками дадут начало многочисленным колониям мутантов, в то время как отпечатки с чашки без перераспределения выявляют только небольшое число колоний, соответственно исходным микроколониям мутантов.

Индукция мутаций под действием ультрафиолетового (УФ) облучения.

В качестве источника УФ-лучей используют бактерицидную лампу ВУФ-15, которую устанавливают на расстоянии 60 см от центра облучаемого объекта.

Для получения lac -мутантов E. coli предварительно выращивают на питательном бульоне в течение 14-18 ч. Клетки осаждают центрифугированием, ресуспендируют в 40 мл 0,1 моль раствора MgSО 4 и охлаждают на льду для прекращения деления клеток. Суспензию помещают в стерильную чашку Петри и облучают в течение 15-150 сек (предварительно определяют оптимальную мутагенную дозу, равную 0,1-1% от числа выживших бактерий), после чего клетки осаждают центрифугированием и ресуспендируют в питательном бульоне. Пробирку с бульоном инкубируют при 37 ° С в течение 14-18 ч. Разведения 10 -2 - 10 -5 по 0,1 мл высевают на среду Эндо. Параллельно делают контрольные посевы. lac -мутанты E. coli на среде Эндо образуют бесцветные колонии.

Для выделения антибиотикорезистентных мутантов используют штамм E. coli В или К12, который высевают после облучения на минимальный агар с определенной концентрацией антибиотика. Параллельно делают контрольные посевы. Клетки E. coli , выросшие на этой среде является антибиотикорезистентными.

Постановка опыта конъюгации.

Донор штамм E. coli К12 Hfr leu + Str s. Реципиент - штамм E.coli К12 F - leu - Str r. Селективная среда - минимальная глюкозосолевая среда со стрептомицином.

К 2 мл 3-часовой культуры реципиента добавляют 1 мл бульонной культуры донора и инкубируют 30 мин при

37 ° С. Затем смесь разводят до 10 -2 - 10 -3 и высевают по 0,1 мл на селективную среду в чашки Петри, где вырастут только рекомбинанты. В качестве контроля на среду сеют донорский и реципиентный штаммы, которые не будут расти на ней, так как первый штамм чувствителен к стрептомицину, а второй - ауксотроф по лейцину. После подстчета выросших колоний определяют частоту рекомбинаций по отношению количества рекомбинантных клеток к реципиентным.

Постановка опыта трансформации.

Реципиент - штамм Bacillus subtilis Str s (сенная палочка, чувствительная к стрептомицину). Донор - ДНК, выделенная из штамма B. subtilis Str r (устойчивого к стрептомицину). Селективная среда для отбора рекомбинантов (трансформантов) - питательный агар, содержащий 100 ЕД/мл стрептомицина.

К 1 мл бульонной культуры B. subtilis добавляют 1 мл ДНК донора и инкубируют 30 мин при 37 ° С. Для определения количества образовавшихся стрептомицинустойчивых рекомбинантов 0,1 мл смеси высевают на селективную среду. Частоту трансформации определяют по отношению количества выросших колоний рекомбинантных клеток к числу клеток реципиентного штамма.

Постановка опыта специфической трансдукции.

Реципиент - штамм E. coli lac -, лишенный в-галактозидазного оперона, контролирующего ферментацию лактозы. Трансдуцирующий фаг - фаг л dgal, в геноме которого часть генов замещена в-галактозидазным опероном E. coli. Селективная среда - среда Эндо, на которой лактозоотрицательные колонии бактерий реципиентного штамма образуют бесцветные колонии, а лактозоположительные колонии рекомбинантного штамма - ярко малиновые с металлическим оттенком.

К 1 мл 3-часовой бульонной культуре реципиентного штамма добавляют 1 мл трансдуцирующего фага в концентрации 10 6 - 10 7 частиц в 1 мл. Смесь инкубируют 60 мин при 37 ° С и готовят ряд десятикратных разведений. Из пробирки с 10 -6 разведением по 0,1 мл культуры высевают на три чашки со средой Эндо и инкубируют в течение суток. Величину трансдукции вычисляют по отношению количества клеток рекомбинантов, обнаруженных на всех чашках к числу клеток реципиентного штамма.

Эукариотический геном. Особенности строения

Геном эукариот устроен намного сложнее, чем у прокариот. Генетический аппарат эукариотической клетки обособлен в виде клеточного ядра, внутри которого располагаются основные носители наследственности — хромосомы. Количество хромосом видоспецифично и колеблется от двух (лошадиная аскарида) до тысячи (низшие растения). Количество ДНК в клетках эукариот намного выше, чем у бактерий. Оно оценивается с помощью величины С — количества ДНК на гаплоидное число хромосом, т.е. на геном. Оно колеблется у разных видов от 104 до 1011 и часто не коррелирует с уровнем организации вида. Самые большие значения величины С, превышающие содержание ДНК в геноме человека, характерны для некоторых рыб, хвостатых амфибий, лилейных.

Одной из особенностей генома эукариот является структурная и функциональная связь ДНК с белками. Она обусловлена особенностями процесса передачи генетической информации и регуляторной функцией белков. Информация передается от клетки к клетке в процессе сложного процесса клеточного деления (митоза или мейоза). Для полного и точного распределения ее между дочерними клетками в интерфазе происходит процесс удвоения количества ДНК, а в начале деления (профазе) — процесс конденсации интерфазных хромосом. В итоге хромосомы приобретают вид компактных плотных тел. Компактизация хромосом исключает риск их запутывания во время расхождения к разным полюсам в анафазе. В этих структурных преобразованиях хромосом участвуют ядерные белки — гистоны, которые осуществляют суперспирализацию ДНК. Гистоны выступают также в качестве регуляторов матричной активности интерфазных хромосом, т.к. связь гистона с функционирующим участком хромосомы переводит его в гетерохроматическое, т.е. сильно спирализованное и, следовательно, неактивное состояние.

Характерной особенностью генома эукариот является избыточность ДНК , количество которой намного превышает то, которое необходимо для кодирования структуры всех клеточных белков. Одной из причин избыточности является наличие повторяющихся последовательностей нуклеотидов. Их существование впервые было установлено в конце 60-х гг. ХХ в. американскими исследователями Р. Бриттеном и Д. Девидсоном при изучении кинетики ренатурации ДНК (воссоединения одиночных цепей). В настоящее время установлено, что в составе эукариотической ДНК присутствуют два типа повторов — умеренноповторяющиеся п.н. и высокоповторяющиеся п.н. Умеренные повторы встречаются в виде десятков и сотен копий; средний размер их составляет ≈ 300-400 п.н. Они могут быть прямыми и инвертированными (палиндромы). Между повторами располагаются неповторяющиеся участки ДНК. Высокоповторяющиеся п.н. представляют собой короткие фрагменты ДНК (десятки п.н.), которые представлены большим количеством копий (до 106). В ряде случаев состав оснований в этих повторах отличается от такового в геноме в целом, в результате чего повторы могут образовывать отдельную фракцию с определенной плавучей плотностью. Эта фракция называется сателлитной ДНК. Она никогда не транскрибируется, в связи с чем ее называют также “молчащей”. Установлено, что сателлитная ДНК локализована в гетерохроматических районах хромосом: в теломерах, около центромеры, в ядрышке. Считается, что она выполняет регуляторную функцию, обеспечивая структурные преобразования хромосом во время процесса передачи генетической информации от клетки к клетке.

Избыточность ДНК в геноме эукариот в значительной мере создается также за счет того, что в его составе много нуклеотидных последовательностей, которые не кодируют структуру белков. Некоторые из них входят в состав генов, как например, интроны — вставки. Кроме того, есть так называемые сигнальные последовательности, которые не транскрибируются, а служат лишь для связывания белков-регуляторов. К их числу относятся промоторы, участки, контролирующие спирализацию хромосом; участки прикрепления хромосом к веретену и др.

Лишь немногие гены присутствуют в эукариотическом геноме в единственной копии. Основная их масса представлена разным числом копий. Расположенные рядом идентичные гены образуют кластеры. Существование кластеров говорит о большой роли дупликаций генов в эволюции геномов. Пример кластеров: гены белков эритроцитов — глобинов. Гемоглобин является тетрамером, состоящим из 4-х полипептидных цепей: 2α и 2β. Каждый тип цепей кодируется генами, организованными в кластер. У человека α-кластер располагается в 11-й хромосоме, а β-кластер — в 16-й хромосоме. β-кластер занимает участок ДНК в 50 тыс. п.н. и включает в себя пять функционально активных генов и один псевдоген. Псевдогены — это нефункционирующие, реликтовые гены, произошедшие в результате мутационных изменений от некогда активных генов. Они не экспрессируются. Гены в составе кластера отделены друг от друга спейсерами — нетранскрибируемыми вставками, в которых иногда могут присутствовать регуляторные участки.

Основным отличием эукариотических генов от генов прокариот является то, что большинство из них имеют прерывистую структуру и состоят из кодирующих участков — экзонов и некодирующих вставок — интронов. Длина экзонов от 100 до 600 п.н., а интронов — от нескольких десятков до многих тысяч п.н. Интроны могут составлять до 75% от длины гена. Прерывистая структура генов создает основу для более тонкого контроля их работы.

 


Дата добавления: 2020-01-07; просмотров: 141; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!