Примесные полупроводники и их проводимость



Л Е К Ц И Я № 14

Собственные полупроводники и их проводимость

Собственные полупроводники – это твердые вещества, состоящие из элементов IV группы таблицы Менделеева (германий Ge, кремний Si).

Т. к. их валентность равна 4, то на валентном уровне каждого атома находятся по 4 валентных электрона.

При образовании из отдельных атомов твердого тела (когда атомы приближаются друг к другу так близко, что происходит перекрытие электронных облаков) валентные электроны обобществляются и образуют прочные атомные (обменные, а в химии – ковалентные) связи.

 

 

 

 


Пространственная схема образования ковалентных связей в собственных полупроводниках.

 

Свободных электронов нет – это непроводящее вещество (диэлектрик).

 

По зонной теории в собственных полупроводниках все уровни валентной зоны заняты электронами, а до ближайшей свободной зоны (зоны проводимости) лежит неширокая запрещенная зона (с d 1 эВ).

 

 

 


Поведение электронов в твердом теле описывается функцией распределения Ферми-Дирака, которая позволяет вычислить вероятность заполнения электронами того или иного квантового состояния:

 

.

 

 

При Т = 0 К электроны занимают все уровни, начиная с самых нижних, вплоть до уровня Ферми (это энергетический уровень электрона в твердом теле, вероятность заполнения которого при любой температуре равна 1/2).

Т. к. при Т = 0 К все уровни валентной зоны заняты электронами ( < NF > = 1), а уровни зоны проводимости свободны ( ), тогда уровень Ферми (где  ½) должен находиться ровно посередине запрещенной зоны. Но т. к. значения энергии запрещенной зоны не могут быть реализованы электронами твердого тела, тогда уровень Ферми для полупроводников вводится условно – посредине запрещенной зоны (но он в полупроводниках никогда не бывает занят электроном).

 

 

 

 


При наложении на такое вещество слабого электрического поля электроны не могут разорвать прочные ковалентные связи (а по зонной теории – не могут преодолеть запрещенную зону) и стать свободными.

Но если собственному полупроводнику сообщить дополнительную энергию (~ 1 эВ), достаточную для разрушения ковалентных связей (достаточную для преодоления электроном запрещенной зоны), то электрон становится свободным (оказывается в зоне проводимости).

 

Для электронов, появившихся на нижних уровнях зоны проводимости, функция распределения Ферми-Дирака будет иметь значение:

 

.

 

 

Даже для комнатных температур (Т ~ 300 К)  эВ, тогда т. к.  эВ    , значит

,

а это есть функция распределения Максвелла-Больцмана (вырождение снимается, т. к. число электронов N в зоне проводимости << числа возможных квантовых состояний G в этой зоне (N << G)).

 

Концентрация свободных электронов в полупроводниках

 

.

 

 

На месте разорванной ковалентной связи остается нескомпенсированный положительный заряд (перешедший в зону проводимости электрон освобождает энергетический уровень в валентной зоне). Это освободившееся место (освободившийся уровень) может быть занято другим электроном.

Тогда создается ситуация, когда положительный заряд начинает как бы перемещаться по кристаллу подобно частице – это «квазичастица», которую назвали «дыркой».

Т. о. при разрыве ковалентных связей образуются свободные электроны и дырки, возникает электронно-дырочная (собственная) проводимость.

 

Удельная проводимость собственного полупроводника

 

,

 

где  - концентрация свободных носителей заряда (электронов, дырок);

 - средняя длина свободного пробега электронов (рассеяние происходит на фононах в полупроводниках), ,

при ,

при ;

 - средняя скорость теплового (хаотического) движения электронов (для классических частиц ).

 

 

Степенная зависимость при  или  гораздо слабее экспоненциальной, значит можно записать для удаленной проводимости собственного полупроводника

.

 

 

Т. к. , тогда можно записать

.

 

 

 


,                   

 

 

 

Т. е. по tg угла наклона кривой  можно определить энергию активации (ширину запрещенной зоны) полупроводника.

 

С ростом температуры сопротивление собственного полупроводника быстро уменьшается несмотря на тот факт, что с ростом температуры увеличивается и количество фононов, которые мешают двигаться электронам ( , ). Но этот процесс менее интенсивный по сравнению с лавинообразным нарастанием количества свободных электронов и дырок. Это в итоге приводит к практически экспоненциальному снижению сопротивления полупроводника при увеличении температуры.

 

Сильная зависимость сопротивления собственных полупроводников от температуры используется в терморезисторах (датчики пожарной сигнализации).

Примесные полупроводники и их проводимость

 

Если часть атомов собственного полупроводника заменить на атомы с валентностью на единицу большей, чем у основных атомов, то такой полупроводник называют примесным.

Такие примесные атомы имеют валентность равную 5. При формировании твердого тела четыре валентных электрона примесных атомов будут образовывать прочные ковалентные связи с четырьмя электронами основных атомов, а пятый электрон примесного атома оказывается слабосвязанным (но не свободным).

 

 

 


Т. к. пятый электрон не свободный, и он не тратил энергию на образование ковалентной связи, то его энергия выше энергии электронов валентной зоны (поэтому условно этот уровень помещают в запрещенной зоне вблизи валентной зоны). Тогда уровень Ферми, вероятность заполнения электронами которого равна ½, прижимается к дну зоны проводимости.

При Т = 0 К свободных носителей заряда нет, полупроводник – не проводит электрического тока.

 

Если такому примесному полупроводнику сообщать дополнительную энергию, гораздо меньшую ширины запрещенной зоны (~ 1 эВ) или меньшую энергии, необходимой для разрыва ковалентной связи, но достаточную для отрыва слабосвязанных электронов (дополнительная энергия должна быть t энергии ионизации  - энергии, необходимой слабосвязанному электрону для перехода с дополнительного уровня в зону проводимости,  эВ), то в таком полупроводнике появляются свободные электроны, но т. к. ковалентные связи не разрываются, то дырок нет. Значит в таком примесном полупроводнике возникает электронная проводимость.

 

Такие примесные полупроводники называют электронными или донорными или полупроводниками n-типа ("negativ") (примесные уровни называют донорными уровнями).

 

При увеличении дополнительной энергии слабосвязанные электроны все становятся свободными и за счет рассеяния на фононах сопротивление начнет возрастать.

А когда дополнительная энергия достигнет ~ 1 эВ (т. е. станет достаточной для разрыва ковалентной связи) возникает собственная (электронно-дырочная) проводимость.

 

 

 


Если часть атомов собственного полупроводника заменить на атомы с валентностью, на единицу меньшей, чем у основных атомов, то такой полупроводник называют примесным.

Такие примесные атомы имеют валентность равную 3. При формировании твердого тела три валентных электрона примесных атомов будут образовывать прочные ковалентные связи с тремя электронами основных атомов, а для образования четвертой связи у примесного атома нет электрона. Значит, на этом месте есть «дырка».

При Т = 0 К свободных носителей заряда нет, полупроводник – не проводит электрического тока.

 

Если такому примесному полупроводнику сообщать дополнительную энергию, гораздо меньшую ширины запрещенной зоны (~ 1 эВ) или меньшую энергии, необходимой для разрыва ковалентной связи, то эта дополнительная энергия способствует переходу электрона от соседнего атома на вакантное место. При этом дырка начинает перемещаться по кристаллу – возникает дырочная проводимость.

 

 

     

 


Электрон, получив дополнительную энергию (энергию ионизации  эВ) переходит из валентной зоны на дополнительные (акцепторные) уровни, находящиеся в запрещенной зоне (акцепторные уровни прижимают уровень Ферми к потолку валентной зоны).

В зоне проводимости нет свободных электронов, а в валентной зоне появляются дырки – дырочная проводимость.

 

Такие примесные полупроводники называют дырочными или акцепторными или полупроводниками р-типа ("positiv").

 

При увеличении дополнительной энергии все акцепторные уровни заполняются электронами и за счет рассеяния дырок на фононах сопротивление начнет возрастать.

А когда дополнительная энергия достигнет ~ 1 эВ (т. е. станет достаточной для разрыва ковалентной связи) возникает собственная (электронно-дырочная) проводимость.

 


Дата добавления: 2019-08-31; просмотров: 288; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!