Почему лекарства от аллергии вызывают сонливость



 

Итак, относительно того, как мозг управляет сном, нейробиологи достигли некоторой ясности: очевидно, за выбор состояния сна или бодрствования отвечает сеть возбуждающих и блокирующих возбуждение центров в промежуточном мозге и стволе мозга, иногда при поддержке коры больших полушарий. Таламус следит за тем, какие раздражения проникают в сознание, и регулирует глубину сна при поддержке нейронов большого мозга, синхронизирующих свою активность по нарастающей. Глубокий сон с регулярными промежутками прерывается фазами БС, организуемого небольшим участком в мосту мозга, который также включается и выключается сетью из нескольких нервных узлов. Судя по всему, эти БДГ-фазы имеют совершенно другую функцию, чем остальной сон.

Сейчас известны даже сигнальные вещества (нейромедиаторы), посредством которых блокируются или возбуждаются те или иные нервные узлы, что объясняет, между прочим, действие некоторых лекарств. К примеру, наиболее распространенные сейчас снотворные средства — бензодиазепины и аналогичные вещества — имитируют или усиливают действие медиатора, с помощью которого центр сна в переднем гипоталамусе передает блокирующие сигналы. Вещество называется гамма-аминомасляная кислота, сокращенно ГАМК. Одна из множества проблем использования этих медикаментов в том, что они подавляют и центр БС. Поэтому искусственно вызываемый сон приносит организму меньше бодрости, чем нормальный. Человек, принимающий снотворные, быстрее устает, поскольку его мозг стремится добрать также и дефицит БС.

Сеть управления сном виновата и в неприятном побочном действии многих медикаментов против аллергии — сонливости. Так называемые антигистаминные препараты блокируют вызывающий аллергические проявления нейромедиатор гистамин. Но, к сожалению, в этом веществе нуждается и часть возбуждающих центров в стволе мозга. Поэтому многие антигистаминные средства сдвигают переключатель в положение сна. Именно поэтому они стали популярны как альтернативные, продаваемые без рецепта снотворные. Однако и тут нужно настоятельно предостеречь от неграмотного самолечения: антигистаминные препараты вызывают привыкание намного быстрее, чем обычные снотворные, а при регулярном приеме имеют еще множество дополнительных побочных эффектов.

Многие тонизирующие средства, напротив, прямо или косвенно поддерживают систему возбуждения: употребление кофе — наверное, самый популярный способ взбодриться. Этот напиток содержит кофеин — вещество, блокирующее рецепторы аденозина. «Аденозин — нейромодулятор. Он уменьшает активность других нейронов», — поясняет Петер Аккерман, сомнолог из Цюрихского университета. Поэтому он блокирует также и деятельность системы возбуждения, а его подавление делает нас бодрее. Другая группа тонизирующих — амфетамины, к которым относится и наркотик экстази, действует более непосредственно, усиливая действие важнейших возбуждающих нейромедиаторов дофамина, норадреналина и адреналина. Близко родственен им также препарат метилфенидат, популярное сейчас средство при СДВГ — синдроме дефицита внимания и гиперактивности. От этой болезни страдают прежде всего дети. Одной из многих ее возможных причин называют нарушения в мозговой системе возбуждения.

Сейчас фармакологи пытаются создать снотворные и тонизирующие средства, которые с высокой точностью воздействовали бы на нейромедиаторы в сети регулирования сна и их рецепторы. В частности, опробуются вещества, блокирующие рецепторы вырабатываемого организмом тонизатора орексина. В опытах на животных эти лекарства показали себя хорошо, вызывая быстрое засыпание без заметных побочных эффектов и даже с достаточным количеством БС-эпизодов. Однако лишь испытания на людях, пока не доведенные до конца, покажут, не вызывают ли новые препараты, например, тяжелых приступов нарколепсии. Это весьма вероятно, поскольку нарушения орексиновой системы нередко бывают причиной этого заболевания.

Главная проблема для фармакологов в том, что большинство нейромедиаторов сети засыпания выполняет в организме множество других функций, а это резко повышает риск нежелательных побочных эффектов. Среди всех разрешенных на сегодняшний день снотворных и тонизирующих препаратов только модафинил, тонизатор, применяемый для лечения нарколепсии и уже получивший нехорошую известность как допинг, судя по всему, действительно действует целенаправленно на систему регуляции сна. Любопытно, что механизм действия модафинила сомнологам до сих пор неизвестен.

Группа исследователей под руководством Тьерри Галлопена из Лионского университета сумела в 2004 г. выяснить, что это загадочное вещество уменьшает действенность нейромедиатора, который возбуждает так называемая ВЛПО-область в переднем гипоталамусе, отвечающий за сон. Тем самым он, возможно, не дает нервным центрам погрузить нас в состояние сонливости. Кроме того, есть указания на то, что модафинил поддерживает нейромедиаторы, переводящие переключатель сна в положение бодрствования, такие как орексин и дофамин.

Так что пока мечта о безграничном господстве над сном и бодрствованием недостижима, несмотря на успехи поисков локализации центров сна, начавшиеся 90 лет назад с объяснением загадочной болезни Экономо.

Однако разветвленная система управления вызывает и совсем другого рода вопросы. Каков смысл всей этой сложнейшей физиологической деятельности в мозге? Почему нам нужен коммутатор, отключающий сознание? Почему таламус порождает сигналы, распространяющиеся по спящему мозгу в виде волн возбуждения? Почему клетки больших полушарий после большой затраты сил синхронизируют свою деятельность и понижают возбудимость? Зачем нам центр БС в мосту мозга?

Поэтому, хотя мы теперь многое знаем о том, как возникает и протекает сон, загадка сна все еще не решена.

 

Подобие сна

 

«Джентльмены, это не фокус!» — воскликнул 16 октября 1846 г. хирург Джон Коллинс Уоррен перед большим собранием онемевших от изумления коллег, которые, впрочем, и сами поняли, что тут все без обмана. Эта фраза стала одной из самых знаменитых в истории медицины. Ведь Уоррен только что удалил пациенту доброкачественную опухоль, причем операционный зал Бостонского университета не оглашался обычными в таких случаях криками боли. Пациент все время операции лежал неподвижно, с закрытыми глазами, в спокойной позе. Зубной врач Уильям Томас Грин Мортон предварительно усыпил его эфиром. Это была первая в мире операция под общим наркозом. Пары эфира отключили сознание пациента и погрузили его в подобное сну состояние.

Сегодня общий наркоз — рутинная медицинская процедура, для которой существует большой выбор препаратов. Некоторые вводятся внутривенно, другие вдыхаются пациентом с помощью маски. Степень риска при этой процедуре в настоящее время невелика, а польза от нее — бесконечна. Многие операции, необходимые для сохранения жизни, например удаление гнойного аппендицита, стали возможны лишь благодаря изобретению Мортона.

Кажется, что люди под наркозом спят. На самом деле во время искусственной анестезии тело и мозг не выполняют ни одной из тех задач, которыми занимаются во сне. Они находятся в некоем временном подобии сна, в которое погрузил их врач с помощью фармакологически активного вещества. При многих операциях анестезиологи еще усиливают с помощью дополнительного средства естественное расслабление мускулатуры. Нередко пациентам делается также дополнительный укол сильного болеутоляющего. Все это — меры предосторожности на случай, если наркоз окажется слишком легким.

Как и при настоящем сне, бодрствующее сознание при наркозе отключено. Информация, поступающая от органов чувств, не проводится дальше в мозг. Рисунок электрической активности мозга и в самом деле очень напоминает ЭЭГ спящего. Причем анестезиологи при тяжелых операциях, как правило, параллельно снимают энцефалограмму пациента, чтобы точно знать глубину наркоза. Специальные компьютеры помогают врачу в этой оценке. Здесь также действует правило: чем длиннее волны ЭЭГ, тем глубже подобие сна.

Однако, в отличие от настоящего сна, одурманенный наркозом мозг не может с помощью центра тревожного оповещения собственными силами включить сознание, то есть проснуться. Внешние раздражения просто не проникают на нужную глубину. Этим воспользовался нейробиолог Эрнст Пёппель из Мюнхенского университета. Руководимая им группа разработала прибор, который заглядывает в мозг глубже и дает информации больше, чем ЭЭГ. Это устройство посылает в уши пациенту щелкающие звуки, а затем регистрирует, отзывается ли на них мозг волной возбуждения. Наркоз можно считать достаточно глубоким лишь в том случае, если мозг не реагирует. «Видимо, состоянию наркоза соответствует подавление обработки информации», — поясняет Пёппель.

Долгое время было не ясно, каков механизм действия большинства анестезирующих веществ. Одно из самых распространенных предположений гласило, что они связываются с рецепторами дальних отделов мозга, понижающими активность нервных клеток. Это подавляет возбудимость клеток и ведет к отключению сознания. Нервные клетки в эволюционно древнейших отделах, например в стволе мозга, разумеется, не должны подвергаться такого рода воздействию, поскольку выполняют жизненно необходимые функции, в частности управление дыханием. Некоторые виды наркоза действительно действуют по описанному принципу. Это также объясняет, почему наркоз родственен скорее не ночному сну, а обмороку или коме. В этих крайних случаях потери сознания высшие части центральной нервной системы также в основном отключены и не могут снова включиться собственными силами.

С тех пор как ученые выяснили механизм регуляции сна, они обнаружили, что по крайней мере некоторая часть препаратов для наркоза воздействует целенаправленно на переключатель сон/бодрствование. В 2002 г. лондонские анестезиологи проводили опыты с веществами мусцимол и пропофол, связывающимися с теми же рецепторами, что и снотворные группы бензодиазепинов. Похоже, они в конечном счете действуют так же, как эти снотворные, но передвигают выключатель сна в самое крайнее положение. В результате возникает состояние «суперсна», необратимого на то время, пока длится фармакологическое воздействие.

Сейчас исследователи согласны с тем, что наше сознание создается на множестве уровней и, следовательно, может быть более или менее явно отключено в разных местах. Различные снотворные, анестезирующие и наркотизирующие средства воздействуют на различные участки этого сложного устройства, и в большинстве случаев результат выглядит схожим лишь извне. Есть целый ряд естественных состояний расслабления и потери сознания, которые плавно перетекают друг в друга и могут быть классифицированы по прогрессирующей утрате способности восприятия примерно так: медитация, гипноз, обморок и кома.

Сон в этот ряд не вписывается. Он представляет собой качественно иной процесс, активно управляемый мозгом. Такое различие очень многое говорит о структуре нейронной обработки информации в мозге. Мы можем отключать ее последовательно на многих уровнях, но при этом никогда не достигнем состояния сна. Дело в том, что сон — это второе, совершенно особое состояние, которое не определяется просто более или менее выраженным отсутствием бодрствующего сознания, а имеет собственные существенные признаки.

Поэтому хромает и излюбленное с древнейших времен сравнение сна со смертью, которая в конечном счете представляет собой не что иное, как крайнюю степень отсутствия сознания. Еще в греческих мифах Гипнос и Танатос, Сон и Смерть, были братьями, сыновьями богини ночи. Такое сравнение неверно, поскольку в сне не меньше витальности, чем в бодрствовании. Это две стороны одной медали, называемой жизнь, и у обеих общая противоположность — смерть.

 

Глава 3. Посланцы ночи

 

 

Внутренние часы

 

Словно стая птиц, в нескольких метрах над землей летят над долиной великолепные бабочки, умело направив по ветру оранжевые с черным крылья. И хотя удивительные создания размером с детскую ладошку держатся в воздухе почти неподвижно, рой проносится мимо со значительной скоростью. Мы уже потеряли бы их из виду, если бы время от времени то одна, то другая не взмахивала мощными крыльями. Это бабочки вида монарх, совершающие свое обычное путешествие длиной 3600 км из отдаленного уголка Северной Америки в горные леса Сьерра Мадре в Мексике. Здесь на небольшом пятачке ежегодно собираются в ноябре сотни миллионов этих прославленных путешественниц.

Удивительная игра природы. Но какое отношение она имеет к человеческому сну? Самое прямое. Не так давно ученые выяснили что бабочка-монарх никогда не отыскала бы пункт назначения без исключительно развитого чувства времени. Насекомые ориентируются по положению солнца, а его можно правильно истолковать лишь в том случае, если чувство времени постоянно подсказывает им, в какой стороне света находится сейчас согревающая нас звезда. Люди, конечно, тоже обладают такими внутренними часами. Это устройство на множестве уровней помогает телу приспособиться к постоянно повторяющейся смене дня и ночи. Одно из самых заметных проявлений работы внутренних часов — тот факт, что они диктуют нам, когда спать, а когда нет.

Наука о внутренних ритмах всех живых существ называется хронобиология. Она изучает приспособленность организмов к временам года, фазам луны, приливам и отливам, а также смене дня и ночи. Началом ее стал тот день в 1729 г., когда французский астроном Жан-Жак д’Орту де Майран впервые доказал существование внутренних часов. Он поставил растение-гелиотроп (мимозу) в темную комнату и убедился, что цветок и в отсутствие солнца продолжает закрываться вечером и раскрываться утром. Естествоиспытатели долго игнорировали этот и подобные результаты, пока примерно 50 лет назад широкий международный и междисциплинарный круг исследователей не объединился для создания хронобиологии как самостоятельной области науки. Зачинщиками были немецкие физиологи Юрген Ашофф и Эрвин Бюннинг, а также американец Колин Питтендрай. Они и по сей день считаются отцами хронобиологии.

В середине 1960-х гг. под руководством Ашоффа в баварском местечке Андекс был оборудован бункер. Две комнаты без окон, часов, телефона, отгороженные от внешнего мира стенами метровой толщины и двойными звуконепроницаемыми дверями, служили особой цели: не дать находящимся там людям возможности определить время суток. В «андекском бункере» неделями жили добровольцы, согласившиеся участвовать в опыте. Вскоре стало ясно: у человека тоже есть биологические часы, он способен обходиться без будильника, солнечного восхода и утреннего запаха кофе. Предоставленные самим себе, эти часы, как правило, идут несколько замедленно, так что обитатели бункера ложились спать с промежутками в 24–26 ч. В обычной жизни главный фактор, постоянно поправляющий биологические часы и обеспечивающий их точную работу, — дневной свет.

С тех пор наука узнала очень много о природных часах. Ими обладают почти все живые существа, даже бактерии, существующие уже 3,5 млрд лет. И отмеряют эти часы не только сутки: 90-минутные циклы сна определяют наступление БС-фаз. Внутренний календарь решает, когда цвести цветам, отправляться в путь перелетным птицам и заводить потомство овцам. Часы, отмеряющие время прилива и отлива, помогают крабам вовремя укрыться от набегающих волн. Благодаря лунным часам калифорнийская рыба атерина-грунион отмеряет почти двухнедельные промежутки между самыми сильными приливами, чтобы закопать свою икру в прибрежном песке в момент наивысшего подъема воды.

Журнал «Science» целых три раза — в 1998, 2002 и 2005 гг. — отмечал хронобиологические эксперименты в списке десяти наиболее важных исследовательских достижений года. Мало какая научная область может похвастаться таким всплеском интереса, и это не удивительно: современное общество нуждается в хронобиологии. Электрический свет, дальние путешествия и работа в несколько смен уводят жизнь все дальше от гармонии с естественным суточным и годичным циклом. Люди сами лишают себя доступа к природному ритму. Специалисты по молекулярной биологии расшифровали элементы, обеспечивающие биологическое измерение времени. Хронобиологи выяснили, как функционируют внутренние часы, как они устанавливаются и сообщаются с телом. Выяснилось, что высшие организмы, в том числе человек, имеют встроенные природные часы в каждой клетке тела, что существуют биологические часы органов, мышц и обмена веществ и что все они связаны между собой в сложнейший механизм ощущения времени.

«У млекопитающих гораздо больше свойств, контролируемых биологическими часами, чем кажется на первый взгляд», — пишет американский специалист по хроногенетике Джей Данлэп. Многоклеточные организмы — это «целые часовые магазины». Природа в ходе эволюции вырабатывала независимые друг от друга часы «не один раз, но и не десятки». За последние годы стало ясно, что почти все биологические часы действуют сходным образом и что даже мышь и плодовая мушка дрозофила, чьи филогенетические ряды отстоят друг от друга на сотни миллионов лет, имеют ряд сходных генов, связанных с природными часами.

Главная деталь всех биологических часов — маятник в генах, раскачивающийся уже на уровне каждой отдельной клетки. Эти часовые гены называют «clock» или «period». Они содержат планы выработки различных белков, которые периодически подавляют собственное производство. В какой-то момент количество того или иного белка перешагивает за максимум. С этого момента его концентрация начинает снижаться, пока не будет снята блокировка со стороны соответствующего часового гена и движение маятника не начнется сначала.

Природа оснастила этот основной принцип множеством мелких деталей и осуществила с совершенным искусством. Например, ритмически активным клеткам удается непрерывно и со строгой периодичностью повышать и понижать количество своих часовых белков. Сигналы извне, например дневной свет, влияют на активность генов и тем самым переставляют часы. Концентрация часовых белков задает ритм, как это делает раскачивание механического маятника в стенных часах. Но часовые гены влияют также на считывание других генов, продукты которых в результате колеблются в том же ритме: эти белки, как биологические часовые стрелки, сообщают телу сигналы времени и помогают координации с хронометрами во внутренних органах.

«Биохимия всех клеток тела полностью подчиняется ясной суточной структуре», — уверен Тиль Рённеберг, первый в Германии профессор хронобиологии, работающий в Мюнхенском университете. Следовательно, дух и плоть не во всякое время работают с равной эффективностью: краткосрочная память лучше всего функционирует с утра, долгосрочная — вскоре после полудня. Сложные задачи лучше всего решаются незадолго до полудня. Мышечная сила, выносливость и кровообращение достигают пика ранним вечером. Однако к этим данным нужно относиться с осторожностью: с хронобиологической точки зрения все люди устроены по-разному.

«Поскольку внутренние часы управляются генами, темп их хода в основном передается по наследству. Каждый человек следует собственному индивидуальному ритму», — пишет Рённеберг. Люди, живущие ночной жизнью, ложатся спать в тот момент, когда любители рано вставать уже просыпаются для следующего дня. Естественно, моменты подъема и понижения активности приходятся у этих групп на разное время. Голландский биолог Барбара Бимане обнаружила даже, что подопытные животные всегда лучше всего помнят событие из недавнего прошлого в то время суток, когда оно впервые произошло: «С точки зрения адаптации имеет смысл использовать сегодняшний опыт как временную ориентировку на завтра», — поясняет она.

Многочисленные биологические хронометры в нашем теле управляются центральными часами в мозге, находящимися в гипоталамусе, в непосредственной близости к основной части системы регуляции сна. Там в так называемых супрахиазматических ядрах (СХЯ) залегают 20 000 плотно прилегающих друг к другу нейронов, которые разными путями задают ритм всем органам и в то же время обеспечивают синхронность работы биологических часов со сменой дня и ночи во внешнем мире. Для этого у нас в глазах есть специальные датчики света, которые не воспринимают изображение, а только замеряют освещенность и непосредственно передают эту информацию центральным часам в мозге.

 

Время спать

 

Не случайно Ашофф и его коллеги при экспериментах в бункере прежде всего отмечали время, когда испытуемые засыпали и просыпались. Цикл сна и бодрствования — наиболее ощутимый для нас самих из всех наших биологических ритмов; его, разумеется, легче всего наблюдать. Всякий, кому случалось совершать дальние перелеты с большой разницей во времени в начальном и конечном пункте, знает, что это такое — вынужденно бодрствовать в тот момент, когда внутренние биологические часы показывают время сна, и наоборот — как трудно заснуть, если наше тело считает, что сейчас на дворе белый день. Очевидно, датчики времени промежуточного мозга с регулярными промежутками посылают сигналы в наши центры возбуждения и засыпания, так что мы примерно каждые 24 ч в одно и то же время ощущаем потребность в сне. Тем самым природа вот уже миллионы лет заботится о том, чтобы мы, как и наши предки, спали главным образом тогда, когда меньше всего надежды отыскать пропитание, то есть ночью.

 

 

Эксперимент 7/13: По ночам склонность ко сну у людей особенно велика. Она также слегка повышается в послеобеденное время. Подопытные 7 минут могли спать, а затем должны были 13 минут бодрствовать. Чем больше склонность ко сну, тем чаще они засыпали в 7-минутные промежутки.

 

Один из часовых нейромедиаторов засыпания обнаружил молодой берлинский биохимик Ахим Крамер, после защиты диссертации работавший некоторое время в США, в Гарвардской школе медицины в Бостоне. Он исследовал всевозможные молекулы, вырабатываемые нейронами центральных часов у хомяков, и проверял, оказывают ли они влияние на суточный ритм животных. В 2001 г. ему удалось наконец найти искомое: стоило впрыснуть в промежуточный мозг хомяков одно из тридцати двух исследованных им веществ, под названием «ТГФ-альфа», как эти активные по ночам зверюшки начинали вести себя ночью, как днем. Они немедленно прекращали свою обычную в это время непрерывную беготню и сидели смирно до тех пор, пока действие инъекции не прекращалось.

Дальнейшие исследования вписывались в эту картину. Клетки СХЯ вырабатывают сигнальное вещество главным образом днем. В одном из центров возбуждения в мозге хомяков находятся клетки, чувствительные к ТГФ-альфа. Видимо, именно эти рецепторы отвечают за сон грызунов, подавляя их систему возбуждения. Во всяком случае, вещество, активирующее те же рецепторы, также заставляет животных прекратить беготню. А мыши с модифицированными генами, у которых этот рецептор поврежден, проявляют гиперактивность.

Судя по всему, наши внутренние часы вырабатывают блокаторы возбуждения главным образом ночью, посылая тем самым важный сигнал наступления усталости. Это звучит банально, но в прошлом столетии ученым пришлось еще доказывать, что мы действительно засыпаем ночью несравненно легче, чем днем. Широкую известность получил так называемый эксперимент 7/13 израильского сомнолога Перетца Лави: он заставлял людей на протяжении целых суток 7 мин пытаться заснуть, а 13 мин быть активными. При этом Лави отмечал, в какое время подопытным чаще всего удавалось заснуть.

Если бы внутренние часы никак не влияли на сон, люди могли бы с равной частотой засыпать или не засыпать в любое время суток. На самом же деле в результате эксперимента получился график, удивительно напоминающий статистику несчастных случаев на дорогах. Между 14 и 16 часами подопытные постоянно засыпали во время семиминутных пауз, а между 22 и 7 часами это происходило почти всегда. Следовательно, поздно ночью и после обеда наблюдалась особенная склонность ко сну — как раз в это время происходит наибольшее число несчастных случаев.

Ночью экспериментатору с большим трудом удавалось добиться от людей бодрствования между промежутками сна. Однако гораздо больше ученых удивило другое: в определенное время суток подопытные не засыпали почти никогда. Для многих это было время между 20 и 22 часами. В эти «запретные для сна зоны», как выразился Лави, биологические часы, видимо, стоят на отметке «бодрствование», независимо от того, насколько человек устал.

 

Процесс S и процесс С

 

Очевидно, внутренние часы занимаются не только тем, что в определенное время посылают сигналы усталости. В другое время они активно поддерживают нас в состоянии бодрствования. К примеру, утром биологический датчик времени взбадривает нас даже в том случае, если мы перед этим не спали. Каждый, кому случалось проводить бессонную ночь, может вспомнить, что страшная сонливость, почти необоримая посреди ночи, с приближением нового дня отступает. Даже совсем не выспавшись, мы снова становимся внимательнее, работоспособнее, сосредоточеннее, а настроение улучшается.

Однако за этим, обычно к полудню, а самое позднее к вечеру, следует неприятное «пробуждение»: как только тело немного снижает свою активность, на невыспавшегося человека нападает неодолимая потребность в сне. Видимо, организму необходимо что-то добрать, и внутренние часы сообщают нам, когда это лучше всего сделать. Следовательно, кроме хронобиологического влияния на нашу потребность в сне существует и вторая составляющая, которая заставляет нас ощущать тем большую усталость, чем дольше мы не спали. Это так называемый гомеостатический фактор, стремящийся поддерживать потребность в сне по возможности на одном уровне.

Сам по себе данный процесс функционирует совершенно так же, как термостат, поддерживающий в холодильнике постоянную заданную температуру. Чем дольше мы бодрствуем, тем с большей силой центр засыпания испытывает потребность переключить коммутатор на сон. Чем дольше мы спим, тем меньше потребность в сне, так что в какой-то момент мы окончательно «выспались» и просыпаемся. «Гомеостатический процесс — функция от продолжительности предшествующего бодрствования», — пояснил мне заведующий отделением психофармакологии и сомнологии Цюрихского университета Александр Борбели во время нашей беседы весной 2006 г.

Не приходится сомневаться, что Борбели знает, о чем говорит: ведь не кто иной, как он разработал в 1982 г. так называемую двухфакторную модель регуляции сна. Согласно этой модели, наша потребность в сне в определенный момент времени есть результат взаимодействия хронобиологических и гомеостатических факторов. Эти компоненты ученый назвал процессом S и процессом С. Процесс S — это гомеостатическая составляющая потребности в сне, а процесс С — влияние внутренних часов, главная задача которых — оставить для долгого сна именно ночь. Когда исследователи удаляли у подопытных животных центральные внутренние часы и тем самым прекращали процесс С, зверьки начинали засыпать на короткое время независимо от времени суток и так же быстро просыпаться.

«Процесс S, напротив, напоминает песочные часы, — говорит Борбели. — Во время бодрствования песок пересыпается сверху в нижний сосуд, при засыпании часы переворачиваются». Поэтому для ощущения хорошего отдыха важно не только, сколько времени подряд мы проспали, но и сколько времени мы потратили в течение дня, чтобы сформировать составляющую S. Значит, если вы знаете, что в ближайшую ночь вам не удастся выспаться, можно попробовать поспать заранее в середине предыдущего дня.

 

Модель Борбели в усовершенствованной форме стала сегодня не только общепризнанной, но и привлекает все больше внимания, вероятно, в связи с общим подъемом интереса и доверия к сомнологии. «Индекс цитирования со временем возрастает, что необычно для научной статьи», — не без гордости замечает автор. В «своем» институте он работает уже четыре десятилетия. Все это время посвящено психофармакологии, а также исследованию биологических ритмов и сна. Его коллектив пользуется среди сомнологов мировой популярностью. И сам Борбели после самого большого своего успеха — опубликования модели регуляции сна — стал в своей области настоящей суперзвездой.

Одну из причин популярности своей модели Борбели видит в том, что «это совсем просто». Вторая причина, думается, в том, что модель объясняет сразу множество явлений. Так, процесс S регулирует в основном нашу потребность в глубоком сне. Чем значительнее компонента S, тем больше дельта-волн порождает наш мозг после засыпания. По той же причине сон в течение ночи становится все более поверхностным. Чем больше песка пересыпалось в сосуд бодрствования, тем меньше дельта-волн появляется на ЭЭГ. Только из-за грандиозного недосыпания мозг даже после 3–4 ч постоянного снижения компоненты S может продолжить включать фазы глубокого сна.

С точки зрения математики процесс S идет по экспоненте. Непосредственно после засыпания или пробуждения он сильно снижается или повышается, а потом постепенно приближается в некоему постоянному значению. В одном случае такое насыщение — максимальная форма бодрости, когда человек выспался, в другом — кульминация сонливости, которая достигается лишь после двух или трех проведенных без сна ночей.

Частота и продолжительность БС, напротив, связаны и с внутренними ритмами. Они сообщают центру БС, когда ему включаться, а именно каждые 90 минут. Ближе к концу ночи эти фазы появляются чаще и длятся дольше, чем в первые часы сна. Поэтому мы во время послеобеденного отдыха почти никогда не видим снов, и по той же причине люди, работающие в ночную смену и вынужденные, вопреки сигналам своего организма, спать днем, часто получают слишком мало БС.

Но что за физиологический механизм скрывается за таинственным S-процессом? Что, собственно говоря, регулирует в данном случае наше тело? Тот, кто смог бы ответить на этот вопрос, значительно приблизился бы к решению великой загадки — почему мы должны спать. Во всяком случае, не существует сонной отравы «гипнотоксина[2]», которую искал еще в 1913 г. французский врач Анри Пьерон в мозге долго не спавших собак — в его экспериментах вспрыскивание их спинномозговой жидкости нормально высыпавшимся сородичам погружало тех в сон.

Однако нервные клетки центров сна вырабатывают химические вещества, вызывающие усталость, потому что они, в частности, блокируют центры возбуждения. «Но действуют они не в одиночку, — говорит Александр Боберли — Единственного, за все ответственного «сонного вещества», вероятнее всего, не существует. Процесс S регулируется многими факторами». Многое указывает на большую роль вещества аденозин, которое возникает как продукт распада в процессе потребления нервными клетками энергии. По крайней мере, его уровень неизменно нарастает в некоторых областях мозга у кошек, когда исследователи искусственно не дают животным спать. Кроме того, особенно много сна требуется людям с необычным вариантом фермента, замедленно снижающим количество аденозина. Что аденозин вызывает сонливость, было известно уже давно. Ведь именно этим объясняется воздействие кофеина, блокирующего рецепторы аденозина.

Поэтому наша возрастающая по мере продолжительности бодрствования потребность в сне — тоже, вероятно, следствие процессов обмена веществ в бодрствующем мозге, считают исследователи. Чем дольше включено наше сознание, тем больше в мозге собирается продуктов обмена веществ, включая аденозин. От этого мы испытываем усталость, которая в конечном счете является сигналом нервной системы о потребности зарядиться новой энергией благодаря глубокому сну.

Однако это недостаточное объяснение. «Остается нерешенным интереснейший вопрос: что обозначают дельта-волны», — дополняет Борбели. Они возникают потому, что все большее количество нервных клеток синхронизирует свою деятельность и понижает возбудимость. Что их к этому побуждает и какие важные задачи они решают в этом состоянии, до сих пор окончательно не ясно. Ясно лишь одно: чем дольше мы бодрствуем, тем сильнее потребность клеток больших полушарий переключить коммутатор в положение сна. С тех пор как исследователям удалось показать, что дельта-волны также самостоятельно возникают в изолированных от остального тела тонких срезах коры полушарий, если искусственно поддерживать жизнь в этих препаратах, а также что электрические поля с частотой колебаний дельта-волн способны погрузить человека в глубокий сон, не приходится сомневаться, что и эта деятельность мозга вызывает сонливость и вносит существенный вклад в процесс S.

 


Дата добавления: 2019-08-31; просмотров: 183; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!