Основные характеристики корпоративной сети
К корпоративной сети, как и к другим типам компьютерных сетей, предъявляется ряд требований. Главное из них – обеспечение пользователям возможности оперативного доступа к разделяемым ресурсам всех компьютеров, объединенных в сеть. Решению этой основной задачи подчинены остальные требования: по производительности, надежности, безопасности, управляемости, совместимости, расширяемости, масштабируемости и прозрачности. Качество предоставления услуг сетью определяется тем, насколько полно выполняются эти требования, особенно по производительности и надежности.
Производительность корпоративных компьютерных сетей
Производительность сети - одно из основных свойств корпоративных сетей. Оно обеспечивается возможностью распараллеливания работ между несколькими элементами сети. Производительность сети измеряется с помощью показателей двух типов - временных, оценивающих задержку, вносимую сетью при выполнении обмена данными, и показателей пропускной способности, отражающих количество информации, переданной сетью в единицу времени. Эти два типа показателей являются взаимно обратными, и, зная один из них, можно вычислить другой.
Для оценки производительности сети используют ее основные характеристики:
- время реакции;
- пропускная способность;
- задержка передачи и вариация задержки передачи данных.[5]
Обычно в качестве временной характеристики производительности сети используется такой показатель как время реакции. Термин "время реакции" может использоваться в очень широком смысле, поэтому в каждом конкретном случае необходимо уточнить, что понимается под этим термином.
|
|
В общем случае, время реакции определяется, как интервал времени между возникновением запроса пользователя к какому-либо сетевому сервису и получением ответа на этот запрос как показано на рисунке 1.1. (Приложение 1) Очевидно, что смысл и значение этого показателя зависят от типа сервиса, к которому обращается пользователь, от того, какой пользователь и к какому серверу обращается, а также от текущего состояния других элементов сети - загруженности сегментов, через которые проходит запрос, загруженности сервера и т.п.
Время реакции складывается из нескольких составляющих:
- время подготовки запросов на клиентском компьютере;
- время передачи запросов между клиентом и сервером через сегменты сети и промежуточное коммуникационное оборудование;
- время обработки запросов на сервере;
- время передачи ответов от сервера клиенту;
- время обработки получаемых от сервера ответов на клиентском компьютере.[6]
Ниже будут приведены несколько примеров определения показателя "время реакции", иллюстрируемых рисунком Б1.(Приложение Б)
|
|
В первом примере под временем реакции понимается время, которое проходит с момента обращения пользователя к сервису FTP для передачи файла с сервера 1 на клиентский компьютер 1 до момента завершения этой передачи. Очевидно, что это время имеет несколько составляющих. Наиболее существенный вклад вносят такие составляющие времени реакции как: время обработки запросов на передачу файла на сервере, время обработки получаемых в пакетах IP частей файла на клиентском компьютере, время передачи пакетов между сервером и клиентским компьютером по протоколу Ethernet в пределах одного коаксиального сегмента. Можно было бы выделить еще более мелкие этапы выполнения запроса, например, время обработки запроса каждым из протоколов стека TCP/IP на сервере и клиенте.
Для конечного пользователя, таким образом, определенное время реакции является понятным и наиболее естественным показателем производительности сети. Однако, сетевого специалиста интересует в первую очередь производительность собственно сети, поэтому для более точной ее оценки целесообразно вычленить из времени реакции составляющие, соответствующие этапам несетевой обработки данных - поиску нужной информации на диске, записи ее на диск и т.п. Полученное в результате таких сокращений время можно считать другим определением времени реакции сети на прикладном уровне.
|
|
Вариантами этого критерия могут служить времена реакции, измеренные при различных, но фиксированных состояниях сети:
1. Полностью ненагруженная сеть. Время реакции измеряется в условиях, когда к серверу 1 обращается только клиент 1, то есть на сегменте сети, объединяющем сервер 1 с клиентом 1, нет никакой другой активности - на нем присутствуют только кадры сессии FTP, производительность которой измеряется. В других сегментах сети трафик может циркулировать, главное - чтобы его кадры не попадали в сегмент, в котором проводятся измерения. Так как ненагруженный сегмент в реальной сети - явление экзотическое, то данный вариант показателя производительности имеет ограниченную применимость - его хорошие значения говорят только о том, что программное обеспечение и аппаратура данных двух узлов и сегмента обладают необходимой производительностью для работы в облегченных условиях. Для работы в реальных условиях, когда будет иметь место борьба за разделяемые ресурсы сегмента с другими узлами сети, производительность тестируемых элементов сети может оказаться недостаточной.
|
|
2. Нагруженная сеть. Это более интересный случай проверки производительности сервиса FTP для конкретных сервера и клиента. Однако при измерении критерия производительности в условиях, когда в сети работают и другие узлы и сервисы, возникают свои сложности - в сети может существовать слишком большое количество вариантов нагрузки, поэтому главное при определении критериев такого сорта - проведение измерений при некоторых типовых условиях работы сети. Так как трафик в сети носит пульсирующий характер, и характеристики трафика существенно изменяются в зависимости от времени дня и дня недели, то определение типовой нагрузки - процедура сложная, требующая длительных измерений на сети. Если же сеть только проектируется, то определение типовой нагрузки еще больше усложняется[7].
Во втором примере критерием производительности сети является время задержки между передачей кадра Ethernet в сеть сетевым адаптером клиентского компьютера 1 и поступлением его на сетевой адаптер сервера 3. Этот критерий также относится к критериям типа "время реакции", но соответствует сервису нижнего - канального уровня. Так как протокол Ethernet - протокол дейтаграммного типа, то есть без установления соединений, для которого понятие "ответ" не определено, то под временем реакции в данном случае понимается время прохождения кадра от узла-источника до узла-получателя. Задержка передачи кадра включает в данном случае время распространения кадра по исходному сегменту, время передачи кадра коммутатором из сегмента А в сегмент В, время передачи кадра маршрутизатром из сегмента В в сегмент С и время передачи кадра из сегмента С в сегмент D повторителем. Критерии, относящиеся к нижнему уровню сети, хорошо характеризуют качества транспортного сервиса сети и являются более информативными для сетевых интеграторов, так как не содержат избыточную для них информацию о работе протоколов верхних уровней.
При оценке производительности сети не по отношению к отдельным парам узлов, а ко всем узлам в целом используются критерии двух типов: средно - взвешенные и пороговые.
Средно - взвешенный критерий представляет собой сумму времен реакции всех или некоторых узлов при взаимодействии со всеми или некоторыми серверами сети по определенному сервису, то есть сумму вида:
(1)
где T ij - время реакции i - го клиента при обращении к j - му серверу, n - число клиентов, m - число серверов.
Если усреднение производится и по сервисам, то в приведенном выражении добавится еще одно суммирование - по количеству учитываемых сервисов. Оптимизация сети по данному критерию заключается в нахождении значений параметров, при которых критерий имеет минимальное значение или по крайней мере не превышает некоторое заданное число.
Пороговый критерий отражает наихудшее время реакции по всем возможным сочетаниям клиентов, серверов и сервисов:
(2)
где i и j имеют тот же смысл, что и в предыдущем случае, а k обозначает тип сервиса. Оптимизация также может выполняться с целью минимизации критерия, или же с целью достижения им некоторой заданной величины, признаваемой разумной с практической точки зрения.
Чаще применяются пороговые критерии оптимизации, так как они гарантируют всем пользователям некоторый удовлетворительный уровень реакции сети на их запросы. Средне - взвешенные критерии могут дискриминировать некоторых пользователей, для которых время реакции слишком велико притом, что при усреднении получен вполне приемлемый результат.
Можно применять и более дифференцированные по категориям пользователей и ситуациям критерии. Например, можно поставить перед собой цель гарантировать любому пользователю доступ к серверу, находящемуся в его сегменте, за время, не превышающее 5 секунд, к серверам, находящимся в его сети, но в сегментах, отделенных от его сегмента коммутаторами, за время, не превышающее 10 секунд, а к серверам других сетей - за время до 1 минуты.[8]
Теперь о пропускной способности, она отражает объем данных, переданных сетью или ее частью в единицу времени. Различают среднюю, мгновенную и максимальную пропускную способность.
Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени - час, день или неделя.
Мгновенная пропускная способность отличается от средней пропускной способности тем, что для усреднения выбирается очень маленький промежуток времени - например, 10 мс или 1 с.
Максимальная пропускная способность - это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.
Основная задача, для решения которой строится любая сеть - быстрая передача информации между компьютерами. Поэтому критерии, связанные с пропускной способностью сети или части сети, хорошо отражают качество выполнения сетью ее основной функции.
Существует большое количество вариантов определения критериев этого вида, точно также, как и в случае критериев класса "время реакции". Эти варианты могут отличаться друг от друга: выбранной единицей измерения количества передаваемой информации, характером учитываемых данных - только пользовательские или же пользовательские вместе со служебными, количеством точек измерения передаваемого трафика, способом усреднения результатов на сеть в целом. Рассмотрим различные способы построения критерия пропускной способности более подробно.
Критерии, отличающиеся единицей измерения передаваемой информации. В качестве единицы измерения передаваемой информации обычно используются пакеты (или кадры, далее эти термины будут использоваться как синонимы) или биты. Соответственно, пропускная способность измеряется в пакетах в секунду или же в битах в секунду.
Так как вычислительные сети работают по принципу коммутации пакетов (или кадров), то измерение количества переданной информации в пакетах имеет смысл, тем более что пропускная способность коммуникационного оборудования, работающего на канальном уровне и выше, также чаще всего измеряется в пакетах в секунду. Однако, из-за переменного размера пакета (это характерно для всех протоколов за исключением АТМ, имеющего фиксированный размер пакета в 53 байта), измерение пропускной способности в пакетах в секунду связано с некоторой неопределенностью - пакеты какого протокола и какого размера имеются в виду? Чаще всего подразумевают пакеты протокола Ethernet, как самого распространенного, имеющие минимальный для протокола размер в 64 байта (без преамбулы). Пакеты минимальной длины выбраны в качестве эталонных из-за того, что они создают для коммуникационного оборудования наиболее тяжелый режим работы - вычислительные операции, производимые с каждым пришедшим пакетом, в очень слабой степени зависят от его размера, поэтому на единицу переносимой информации обработка пакета минимальной длины требует выполнения гораздо больше операций, чем для пакета максимальной длины.
Измерение пропускной способности в битах в секунду (для локальных сетей более характерны скорости, измеряемые в миллионах бит в секунду - Мб/c) дает более точную оценку скорости передаваемой информации, чем при использовании пакетов.
Критерии, отличающиеся учетом служебной информации. В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. Например, в кадре протокола Ethernet минимального размера 46 байт (из 64) представляют собой поле данных, а оставшиеся 18 являются служебной информацией. При измерении пропускной способности в пакетах в секунду отделить пользовательскую информацию от служебной невозможно, а при побитовом измерении - можно.
Если пропускная способность измеряется без деления информации на пользовательскую и служебную, то в этом случае нельзя ставить задачу выбора протокола или стека протоколов для данной сети. Это объясняется тем, что даже если при замене одного протокола на другой мы получим более высокую пропускную способность сети, то это не означает, что для конечных пользователей сеть будет работать быстрее - если доля служебной информации, приходящаяся на единицу пользовательских данных, у этих протоколов различная (а в общем случае это так), то можно в качестве оптимального выбрать более медленный вариант сети.[9]
Если же тип протокола не меняется при настройке сети, то можно использовать и критерии, не выделяющие пользовательские данные из общего потока.
При тестировании пропускной способности сети на прикладном уровне легче всего измерять как раз пропускную способность по пользовательским данным. Для этого достаточно измерить время передачи файла определенного размера между сервером и клиентом и разделить размер файла на полученное время. Для измерения общей пропускной способности необходимы специальные инструменты измерения - анализаторы протоколов или SNMP или RMON агенты, встроенные в операционные системы, сетевые адаптеры или коммуникационное оборудование.
Критерии, отличающиеся количеством и расположением точек измерения. Пропускную способность можно измерять между любыми двумя узлами или точками сети, например, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рисунке Б2 (приложение Б). При этом получаемые значения пропускной способности будут изменяться при одних и тех же условиях работы сети в зависимости от того, между какими двумя точками производятся измерения. Так как в сети одновременно работает большое число пользовательских компьютеров и серверов, то полную характеристику пропускной способности сети дает набор пропускных способностей, измеренных для различных сочетаний взаимодействующих компьютеров - так называемая матрица трафика узлов сети. Существуют специальные средства измерения, которые фиксируют матрицу трафика для каждого узла сети.
Так как в сетях данные на пути до узла назначения обычно проходят через несколько транзитных промежуточных этапов обработки, то в качестве критерия эффективности может рассматриваться пропускная способность отдельного промежуточного элемента сети - отдельного канала, сегмента или коммуникационного устройства.
Знание общей пропускной способности между двумя узлами не может дать полной информации о возможных путях ее повышения, так как из общей цифры нельзя понять, какой из промежуточных этапов обработки пакетов в наибольшей степени тормозит работу сети. Поэтому данные о пропускной способности отдельных элементов сети могут быть полезны для принятия решения о способах ее оптимизации.
В рассматриваемом примере пакеты на пути от клиентского компьютера 1 до сервера 3 проходят через следующие промежуточные элементы сети:
Сегмент АR Коммутатор R Сегмент ВR Маршрутизатор R Сегмент СR Повторитель R Сегмент D.
Каждый из этих элементов обладает определенной пропускной способностью, поэтому общая пропускная способность сети между компьютером 1 и сервером 3 будет равна минимальной из пропускных способностей составляющих маршрута, а задержка передачи одного пакета (один из вариантов определения времени реакции) будет равна сумме задержек, вносимых каждым элементом. Для повышения пропускной способности составного пути необходимо в первую очередь обратить внимание на самые медленные элементы - в данном случае таким элементом скорее всего будет маршрутизатор.
Имеет смысл определить общую пропускную способность сети как среднее количество информации, переданной между всеми узлами сети в единицу времени. Общая пропускная способность сети может измеряться как в пакетах в секунду, так и в битах в секунду. При делении сети на сегменты или подсети общая пропускная способность сети равна сумме пропускных способностей подсетей плюс пропускная способность межсегментных или межсетевых связей.
Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства.
Обычно качество сети характеризуют величинами максимальной задержки передами и вариацией задержки. Как правило, задержки не превышают сотен миллисекунд, реже - нескольких секунд. Такого порядка задержки пакетов, порождаемых файловой службой, службой электронной почты или службой печати, мало влияют на качество этих служб с точки зрения пользователя сети.
Такие же задержки пакетов, переносящих голосовые данные или видеоизображение, могут приводить к значительному снижению качества предоставляемой пользователю информации - возникновению эффекта «эха», невозможности разобрать некоторые слова, дрожание изображения и т. п.
Дата добавления: 2019-08-31; просмотров: 359; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!