Причины возникновения искажений и помех в электрических ЦЛТ



 

В настоящее время достаточно широкое распространение в качестве направляющей среды для передачи цифровых сигналов получили электрические кабели, как симметричные, так и коаксиальные. Передаваемые по ним импульсные сигналы искажаются и подвергаются воздействию различного рода помех; собственных, переходных, из-за несогласованности входных и выходных сопротивлений регенераторов в ЦЛТ, импульсных и индустриальных. Рассмотрим сначала влияние искажений на передачу цифровых сигналов. Амплитудно-частотная характеристика затухания кабеля и таких необходимых элементов ЦЛТ, как линейные трансформа горы и входные усилители в регенераторах имеют ярко выраженную частотную зависимость, показанную на рисунке 12.3 и существенно отличается от условий безискажённой передачи: A ( f ) = const.

 

 


Рисунок 12.3 - Амплитудно-частотная  характеристика кабельной

линии связи и входных цепей регенератора

 

Как известно, элементарные посылки цифрового сигнала, как и любого другого сигнала, ограниченного во времени, имеют бесконечный по частоте энергетический спектр. Как видно из  рисунка 12.3, постоянную составляющую и низкочастотную составляющую энергетическою спектра цифрового сигнала оказывается невозможно передавать без искажений по ЦЛТ из-за влияния линейных трансформаторов и разделительных емкостей в усилительных каскадах регенератора. Это явление получило название ограничения полосы частот цифрового сигнала снизу. Аналогично, увеличение затухания кабельной цепи и уменьшение усиления в регенераторах с ростом частоты приводит к ограничению полосы частот цифрового сигнала сверху.

 

 


Рисунок 12.4 - Влияние ограничения полосы частот сверху на форму

 

Простейшая эквивалентная схема ЦЛТ, имитирующая ограничение полосы частот сверху, может быть представлена в виде интегрирующей RC-цепи (рисунок 12.4, а). Напряжение на выходе U вых ( t ) такой цепи пропорционально интегралу от напряжения на входе U вх ( t ) и имеет вид, покаранный на рисунке 12.4, б. Чем длиннее участок регенерации, тем меньше амплитуда сигнала на его выходе U вых ( t ) и тем резче выражено явление увеличения длительности выходных импульсов. При значительном ограничении полосы частот ЦЛТ сверху и большой протяженности участка регенерации, передаваемые импульсные посылки настолько увеличиваются по длительности, что не успевают закончиться к моменту прихода следующего импульса или пробела. Это приводит к наложению принимаемых импульсных сигналов, особенно сильно ощущаемому для соседних символов цифрового потока. Таким образом, искажения цифрового сигнала, вызванные ограничением полосы частот ЦЛТ в области высоких частот, являются причиной появления межсимвольных помех. Искажения, возникающие за счет ограничения полосы частот сверху, называются искажениями первого рода.

К искажениям формы передаваемых цифровых сигналов приводит и ограничение полосы частот ЦЛТ снизу (искажения второго рода). При этом простейшая эквивалентная схема ЦЛТ может быть представлена н виде дифференцирующей RL -цепина рисунке 12.5, а.Напряжение на выходе U вых ( t ) четырехполюсника будет пропорционально производной от напряжения на входе U вх ( t ) ипоказано на рисунке 12.5, б.

 

 


Рисунок 12.5 -  Влияние ограничения полосы частот сверху на форму цифрового сигнала

 

Ослабление низкочастотных составляющих цифрового сигнала приводит к появлению выбросов в принимаемом импульсном сигнале. Причем полярность выброса противоположна полярности передаваемых символов цифрового сигнала и спад выброса затягивается на последующие тактовые интервалы, также вызывая межсимвольные помехи. Такие искажения, возникающие за счет ограничения частот снизу, называются искажениями второго рода. Таким образом, ограничение полосы частот ЦЛТ снизу и сверху при водит к искажению формы передаваемых по кабелю связи цифровых сигналов, которое является причиной появления межсимвольных помех. Уменьшить межсимвольные помехи можно за счет применения линейных кодов и корректирующих усилителей в регенераторах.

На цифровой поток в ЦЛТ также накладываются различного рода посторонние электрические сигналы, которые собственно и являются электрическими помехами, воздействие которых показано на рисунке 12.1. Характер таких помех оказывается различным для разного типа кабелей.

Так в симметричном кабеле, на основе которого строятся ЦЛТ местных и внутризоновых сетей связи, основным видом помех являются переходные помехи. Они возникают вследствие конечности переходного затухания между парами кабеля в четверке и между четверками. Влияние помехи на передаваемый цифровой сигнал зависит от способа организации ЦЛТ. При однокабельной организации ЦЛТ преобладают переходные помехи на ближнем конце участка регенерации, а при использовании двухкабельной системы - переходные помехи на дальнем конце. Величина переходных помех определяется уровнем цифрового сигнала на передаче, переходным затуханием на ближнем или дальнем Концах, а также видом энергетического спектра линейного цифрового сигнала и его скоростью передачи.

Характер суммирования переходных помех в парах кабеля, подверженных влиянию, зависит от числа ЦЛТ, организованных по одной кабельной цепи. При малом числе влияющих ЦЛТ (от двух до четырех) переходная помеха от различных цепей складывается по напряжению. При большом числе влияющих цепей (более четырех) сложение переходных помех осуществляется по мощности.

Другим существенным видом помех для ЦЛТ, организованных по симметричному кабелю, являются помехи от отраженных сигналов. Они возникают из-за несогласованности волновых сопротивлений кабеля и входных и выходных цепей регенераторов, а также из-за неоднородности волнового сопротивления в местах стыка строительных длин. Отраженные в местах несогласованностей и неоднородностей паразитные цифровые потоки, которые опережают линейный цифровой сигнал или отстают от него и выступают в роли мешающего электрического сигнала, то есть помехи.

Специфическим видом помех в ЦЛТ симметричного кабеля являются Импульсные помехи, создаваемые коммутационными приборами автоматических телефонных станций (АТС). Этот вид помех является определяющим на регенерационных участках ЦСП местной сети, прилегающих к АТС. Для того, чтобы уменьшить мешающее воздействие импульсных помех пристанционные участки регенерации приходится делать укороченными (обычно в два раза по сравнению с номинальной длиной).

Собственные (или тепловые) помехи являются основными в ЦЛТ, организованных при помощи коаксиальных кабелей связи. Характерная особенность коаксиальных цепей состоит в том, что с увеличением частоты резко возрастает величина переходного затухания между коаксиальными парами (например, уже на частоте 1 МГц не менее 120 дБ), поэтому при передаче по ним цифровых сигналов переходные помехи отсутствуют. Собственные помехи в коаксиальных ЦЛТ вызываются, в основном, хаотическим тепловым движением электронов в кабельных цепях и шумами усилительных элементов во входных цепях регенераторов. Величина собственных помех в коаксиальной паре зависит от скорости передачи цифровых сигналов и длины участка регенерации. В целом величина помех в ЦЛТ коаксиального кабеля оказывается намного меньше, чем в трактах симметричного кабеля. Это является основной причиной того, что коаксиальные кабели используются для высокоскоростной передачи цифровых потоков.

             


Дата добавления: 2019-08-30; просмотров: 504; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!