Лекция 8. Длина волны де Бройля. Волновые пакеты. Соотношения неопределённостей



 

Длина волны Дебройля (де Бройля) 1)

 

Мы сейчас можем понять тот эксперимент с частицами, который наблюдали в прошлый раз. Пусть у нас имеется пучок частиц с определённым импульсом, такой пучок частиц описывается функцией (3) это плоская волна, значит, мы устроим пучок частиц с определённым импульсом, частица с определённым импульсом описывается волновой функцией. Эта волна падает на экран со щелями, дальше из этих щелей выходит сферическая волна, и на экране эти волны интерферируют. Если из верхней щели идёт волна , а из нижней , то в точке A мы будем иметь: .

Что такое ? Это вероятность обнаружить частицу в точке A, если бы не было второй щели. Мы видели, что ожидаемый результат от наложения этих интенсивностей , а эти два слагаемых  и  дают интерференцию.

Какой длиной волны характеризуются эти функции? Число  у нас связано с импульсом частицы: , . Длина волны

 

                                           (6)

 

называется длиной волны Дебройля.

 

               Дебройль ещё до всей этой науки выдвинул гипотезу о том, что частице надо приписывать волновые свойства, которые характеризуются вот такой длиной волны. Наводящие соображения – это поведение фотонов (фотоны к тому времени были известны): импульс фотона равняется , и , то есть для фотонов это само собой справедливо. При прохождении частиц через отверстия наблюдается интерференция, длина волны, которая характеризует такую интерференцию, определяется по расстояниям между максимумами и минимумами, и эта длина волны действительно связана с импульсом частиц.

 определяет вероятность обнаружить частицу, а сама функция  тогда называется амплитудой вероятности. Если частице приписываются волновые свойства с длиной волны , то спрашивается, это волна чего? Волна просто так не бывает: звуковая волна – это идёт волна давления, электромагнитная волна – это волна возмущения электромагнитного поля, волна, приписываемая частице, это волна амплитуды вероятности. Функция Ψ имеет волновой вид, и надо помнить, что сама по себе амплитуда вероятности не наблюдается, то есть нет способа измерить саму функцию Ψ, наблюдаемой величиной является именно вероятность.

                         Амплитуда не наблюдаема, фаза наблюдаема, и именно фаза определяет интерференционный результат. Если частицы проходят через две щели и мы не можем сказать, через какую щель проходят частицы, то в точке A складываются амплитуды, если мы здесь поставим микроскопы, то в точке A складываются вероятности. Это правило вводит в рамки теории тот удивительный факт, что, когда мы ставим микроскопы, то нарушается интерференционная картина. Даже можно понять, почему нарушается. Когда мы пытаемся пронаблюдать частицу в щели, а наблюдение это всегда проявляется во взаимодействии,1) надо по крайней мере идти с фонарём, чтобы её осветить, при чём осветить светом с достаточно малой длиной волны.2) Если мы хотим её фиксировать в пределах щели, то длина волны должна быть не больше, чем ширина щели. Это означает, что частота должна быть достаточно велика, а это означает, что импульс фотона достаточно большой (по крайней мере, один фотон должен рассеяться на частице и попасть нам в глаз через микроскоп), и когда этот фотон взаимодействует с частицей, то он, конечно, меняет её состояние. А к чему это приводит с точки зрения волновой картины? Когда мы электрон наблюдаем, то взаимодействие приводит к тому, что фаза волны в этой точке хаотически меняется и волны, идущие от этих щелей, перестают быть когерентными, а когда они перестают быть когерентными, то интерференционные члены дают в среднем ноль. Вот как решается эта задача со щелями.

Ну, и, наконец, последний вопрос – являются ли волновые свойства свойствами какого-то специального сорта частиц (электронов или частиц атомных масштабов)? Ответ – нет, волновые свойства присущи всем частицам. Почему же тогда классическая механика существует и мы никогда не наблюдали интерференционные явления, связанные с пулями или падающими камнями? Ответ – длина волны очень мала: , импульс макроскопических объектов – величина порядка единицы, значит, длина волны для классических объектов – величина порядка 10-34м: . Наблюдать интерференционные явления с такой длиной волны невозможно (размер атома водорода 10-10)! Значит, волновые свойства присущи всем частицам, просто для макроскопических частиц они не наблюдаемы (по той же причине, по какой волновые свойства света не очень наблюдаемы на бытовом уровне).

 

       2. Волновые пакеты. Соотношения неопределённостей

 

                           Монохроматическая волна – такая синусоида бесконечной длины – это, конечно, чистая абстракция. Нигде никогда таких волн не бывает. Реальная волна это такая вещь: 1)

 

Рассматривая суперпозицию синусоидальных волн, мало отличающихся друг от друга по частотам , можно построить, так называемый, волновой пакет, то есть пакет с определённой длиной волны Δx и определённой длительностью Δt.2) Значит, можно получить такое решение [уравнения Шрёдингера], которое называется волновым пакетом. Он ограничен в пространстве и во времени.

Синусоидальная волна имеет скорость, называемую фазовой, . Волновой пакет строится из набора волн с частотами в интервале  и волновыми числами . Скорость электромагнитной волны в вакууме не зависит от частоты, но, если есть дисперсия, скорость зависит от частоты. В диспергирующей среде волновой пакет расплывается, поскольку скорости его монохроматических составляющих отличаются друг от друга, весь пакет идёт с групповой скоростью

 

в окрестности центрального волнового числа k0.1)

У нас для волн, представляющих амплитуды вероятностей есть дисперсия.

 

 

И здесь мы снова подбираемся к представлению, почему возможна классическая механика. Если мы имеем решение в виде волнового пакета, это означает, что частица находится где-то в пределах волнового пакета, снаружи вероятность равна нулю, и этот волновой пакет движется с групповой скоростью . Но это и есть классическая скорость частицы! Значит, пуля, обычная пуля, она просто характеризуется очень узким компактным волновым пакетом. В его пределах сидит центр масс пули, и этот пакет много меньше фактических размеров пули, и поэтому она и выглядит как локализованный объект. Но для электрона этот волновой пакет уже даёт большую неопределённость.

                                 Мы видели, что решением уравнения Шрёдингера для свободной частицы является функция , она описывает состояние частицы с импульсом  и энергией , при этом , это означает, что вероятность обнаружить частицу в любой точке пространства одинакова.

Строго монохроматическая волна – это состояние экзотическое. Таких волн в природе нет. Дальше математический факт: общее решение уравнения Шрёдингера для свободной частицы может быть получено суперпозицией таких решений. Из теории рядов Фурье известно, что, взяв суперпозицию таких синусоидальных функций, можно построить функцию отличную от нуля лишь в ограниченной области пространства и равную нулю во всём остальном пространстве, так называемый волновой пакет.

Пусть вдоль оси x идёт такой пакет пространственной протяжённости Δx и ограниченный во времени. Если частица находится в состоянии такой волновой функции (вероятность обнаружения частицы отлична от нуля где-то только в пределах этого пакета), то мы видели, что этот пакет движется с групповой скоростью .

Факт математический: если мы хотим построить функцию отличную от нуля в интервале Δx, то мы должны суммировать экспоненты с различными числами k, но отношение  должно быть порядка единицы: ~1. Если мы слепили этот пакет из функций с различными числами k, то это означает, что там присутствуют различные импульсы (каждому k соответствует свой импульс), значит в состоянии, которое представляется волновым пакетом, импульс не имеет определённого значения, и выполняются такие соотношения:

 

                                   (7)

 

Интерпретация такая: Δx – неопределённость в x-ой координате,  – неопределённость в x-ой составляющей импульса. Утверждается, что эти неопределённости связаны, то есть нельзя одновременно сделать их сколь угодно малыми, как бы мы не изготовляли состояния, мы никогда не добьёмся того, что неопределённости в координатах и импульсе будут сколь угодно малыми. Мы, например, можем изготовлять состояния с всё более точными значениями импульса, тогда значения координат будут делаться всё более неопределёнными. Это называется соотношения неопределённости.

               Эти соотношения, так сказать, фирменный знак квантовой механики, вот, формула  – это фирменный знак теории относительности, а это – квантовой механики. В этих соотношениях увязаны корпускулярные и волновые свойства. Если бы частицы вели себя так, как им предписано в классической механике, то это были бы объекты, которые имеют точное значение координат и точное значение импульса, волна не может иметь точного значения координат, волна размазана в пространстве всегда, и, значит, эти свойства частиц стыкуются более-менее вот в этих соотношениях. То есть в соотношениях (7) в концентрированном виде выражается всё это необыкновенное поведение частиц в атомных масштабах.

 

Расплывание волновых пакетов

 

 

Предположим, что мы создали такое состояние частицы, когда она локализована в ограниченной области пространства, то есть соорудили в начальный момент времени волновой пакет, длина которого Δx0 (мы знаем, что частица где-то здесь в окрестности какого-то значения x). Фазовая скорость волн, из которых построен пакет равна , и, поскольку имеет место такое соотношение , мы видим, что фазовая скорость зависит от k, то есть каждая синусоида, составляющая пакет, движется со своей скоростью. К чему это приведёт? Каждая синусоида начинает сдвигаться относительно другой, между ними меняются фазовые соотношения и этот пакет начинает растягиваться.1) Можно оценить это расплывание.

               Разброс в импульсе , этому разбросу в импульсе соответствует разброс в скоростях , где m – масса частицы, а этому разбросу скоростей будет соответствовать увеличение расстояния , то есть, если в начальный момент времени волновой пакет имел длину Δx0, то к моменту времени t он будет иметь такую длину.2)

Там, где существенны волновые свойства, там рушится понятие траектории. Мне был приведён контрпример – наблюдаются траектории в камере Вильсона. Действительно, в камере Вильсона электроны оставляют следы, как это со всем сообразуется? Сообразуется следующим образом.

Во-первых, как получается след в камере Вильсона? В чистом небе высоко где-то летит самолёт, которого почти не видно, и за ним тянется ровный белый след – рисуется его траектория. Тот же механизм и в камере Вильсона. Там на этих высотах чистая атмосфера и водяной пар, переохлаждённый водяной пар (на высоте 10000м температура порядка –40оС). Водяной пар при таких температурах должен был бы конденсироваться, но для конденсации нужны конденсаты.1) Летит самолёт, выбрасываются частицы (сгорает топливо в двигателе), они становятся центрами конденсации и на них высаживаются капли воды, и мы получаем такую белую полосу. Камера Вильсона действует таким же образом. Под поршнем, скажем, пар, и внезапно поршень выдвигают, начинается адиабатическое охлаждение. Пар переводится в состояние охлаждённого пара, в этот момент залетает частица, она производит ионизацию атомов в воздухе, эти ионизированные атомы делаются конденсатами, на них высаживаются капли воды, мы получаем видимый след. А теперь, как это связано с теорией?

Вот у вас летит электрон это волновой пакет. Я рисую гребни волн. В точке 1 произошла ионизация, и мы получили здесь каплю воды. Волновая функция скукожилась сразу в окрестности этой точки, но этот пакет обладает импульсом, он продолжает двигаться в том же направлении, эта волновая функция снова расплывается. Следующая конденсация произошла в точке 2, и так далее. На самом деле, толщина этого следа по атомным масштабам очень велика. Действительно, каждая капля, которая образуется (это измерение координаты электрона), ложится хаотично в пространстве, но все капли укладываются в след, толщина которого много больше длины волны. Они хаотически обнаруживаются в разных точках в пределах волнового пакета, ну а для нас это выглядит как такая траектория. Если бы мы были сами атомных масштабов и сидели там внутри, то мы видели бы, что он тут вспыхнул, потом он там вспыхнул, и никакой траектории мы тогда б не увидели. Таким образом вся эта картина увязывается со следами в камере Вильсона.

 

Лекция 8. Стационарные состояния. Прохождение частицы через потенциальный барьер. Туннельный эффект.         

Стационарные состояния

Мы нашли одно специальное решение в виде плоской волны, сейчас мы найдём ещё один класс специальных решений для уравнения Шрёдингера

 

 

Положим , математик говорит «будем искать решение в таком виде». Каков смысл этого решения?

Волновая функция это функция координат и времени, мы хотим найти функции такого типа, чтоб были разделены временная и пространственная переменные.1)

Пока чисто математическая проблема.

 

                          

При подстановке мы получаем уравнение: . Отсюда дальше . Слева у нас стоит функция от времени, а справа стоит функция от координат, и вот это равенство, что некоторая функция от времени при любых значениях t равна некоторой функции от координат при любых значениях координат. Как это может быть? Только так, что обе эти функции константы. Это означает, что мы имеем два уравнения  и в то же самое время .

Сразу получаем, что , а функция  удовлетворяет такому уравнению

 

                                             .           (8)

 

 Волновая функция Ψ вида

 

                   (9)

удовлетворяет уравнению Шрёдингера, где функция  удовлетворяет уравнению (8), которое называется уравнением Шрёдингера для стационарных состояний.

Это математический факт, какая физика за этим стоит? А физика такая – функция вида (9) описывает стационарное состояние частицы с энергией E. Стационарное означает, вообще-то, независящее от времени, а почему оно не зависит от времени, когда в (9) время явно сидит? Ещё раз напомню, сама волновая функция не имеет физического смысла, но физический смысл имеет квадрат её модуля, а  и от времени не зависит.

Функция  даёт распределение вероятностей обнаружить частицу в той или иной точке пространства, то есть она даёт пространственную конфигурацию этого состояния, и оно не зависит от времени. Мы имеем застывшую картину, а энергия этого состояния вполне определённая. Значит, есть энергия, но нет кинематики. Мы увидим дальше, что, например, электрон в атоме может находиться в стационарных состояниях с определённой энергией, а что касается пространственной зависимости вероятности обнаружить его в той или иной точке, то это застывшая картина. И, кстати, из этого мы можем понять, как будет решена проблема, которая возникает при применении классической механики к атому.

Как только обнаружилось, что в атоме есть ядро, то сразу родилась планетарная модель атома: положительное ядро и электроны, вращающиеся по орбитам, как планеты вокруг солнца. В эту модель сразу занеслось противоречие, потому что электроны, вращающиеся вокруг ядра, должны излучать электромагнитные волны за счёт своей энергии, – он очень быстро должен был бы свалиться на ядро.1) Мы сейчас видим, какова будет разгадка этой загадки.

Если электрон в атоме находится в стационарном состоянии, которое описывается функцией (9), то это застывшая картина, нет никакого движения заряда,  со временем не меняется – нет излучения.

Вот таким образом решается проблема с электроном в атоме. Я ещё раз говорю, что этот образ электронов, вращающихся, как планеты вокруг солнца, вокруг ядра, который в классической физике присутствует, не имеет отношения к действительности.

Кстати, волновая функция  описывает стационарное состояние (волновая функция для свободной частицы это частный случай стационарного состояния). Для плоской волны есть импульс, импульс это динамическая характеристика, а кинематики, то есть чего-то такого движущегося, нет, потому что вероятность всюду одинакова. Вот, когда мы возьмём волновой пакет, мы получим кинематику, но зато потеряем определённость в импульсе.

 


Дата добавления: 2019-09-13; просмотров: 278; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!