Анализ электрических цепей постоянного тока с одним источником энергии



ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

ЛЕКЦИИ

 

Основные пояснения и термины

Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях.
Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники.
Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.
Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).
Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).
Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).
Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I.
Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i.

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.
Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.

Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения.
Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема - это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.


Рис. 1.1

Для облегчения анализа электрическую цепь заменяют схемой замещения.
Схема замещения - это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов.

На рисунке 1.2 показана схема замещения.


Рис. 1.2

1.2. Пассивные элементы схемы замещения

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.
В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

(1.1)

где l - длина проводника;
S - сечение;
r - удельное сопротивление.

Величина, обратная сопротивлению, называется проводимостью.

Сопротивление измеряется в омах (Ом), а проводимость - в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P - потребляемая мощность;
I - ток.
Сопротивление в схеме замещения изображается следующим образом:

Индуктивностью называется идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают.

Индуктивность катушки, измеряемая в генри [Гн], определяется по формуле

где W - число витков катушки;
Ф - магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.

Емкостью называется идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

где q - заряд на обкладках конденсатора;
Uс - напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС - это источник, характеризующийся электродвижущей силой и внутренним сопротивлением. Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R.
Ri - внутреннее сопротивление источника ЭДС.
Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.
Рис. 1.3
тЙУ. 1.3

Ток

(1.2)

(1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.
Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.
Возможен другой путь идеализации источника: представление его в виде источника тока.
Источником тока называется источник энергии, характеризующийся величиной тока и внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

где - ток источника тока;

- внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Рис. 1.4

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема - это сложная комбинация соединений пассивных и активных элементов.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.
Рис. 1.5 Участок электрической цепи, по которому проходит один и тот же ток, называется ветвью. Место соединения двух и более ветвей электрической цепи называется узлом. Узел, в котором сходятся две ветви, называется устранимым. Узел является неустранимым, если в нем соединены три и большее число ветвей. Узел в схеме обозначается точкой.

Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.
Рис. 1.6

 

 

1.5. Режимы работы электрических цепей

В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим.
При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя. В нормальных условиях величины тока, напряжения, мощности не превышают указанных значений.
Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.
Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.
Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

1.6. Основные законы электрических цепей

На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.


Падением напряжения на сопротивлении называется произведение тока, протекающего через сопротивление, на величину этого
Рис. 1.7 сопротивления.

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Получим следующее уравнение:


Рис. 1.8

или

 

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.

 


Рис. 1.9


Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

 

 

Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.

 

 

Рис.1.10

 

Получим

Из этого уравнения выведем формулу для тока

В общем виде:

,

где ?R - сумма сопротивлений ветви;
?E - алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением тока и со знаком "минус", если не совпадает.

 

2. Эквивалентные преобразования схем

Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

2.1.2.1. Последовательное соединение элементов
электрических цепей

На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.


Рис. 2.1

Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
Падения напряжений на сопротивлениях определяются по формулам

В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.

где - эквивалентное сопротивление.

Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

2.2. Параллельное соединение элементов
электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.


Рис. 2.2

Токи в параллельных ветвях определяются по формулам:

где - проводимости 1-й, 2-й и n-й ветвей.

В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

где

Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.


Рис. 2.3 Эквивалентная проводимость схемы

,

а эквивалентное сопротивление

Напряжение на входе схемы

Токи в параллельных ветвях

Аналогично

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

2.3.Преобразование треугольника сопротивлений
в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если же заменить треугольник сопротивлений
R1-R2-R3, включенных между узлами 1-2-3, трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.


Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.
В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и R?1 включены последовательно, а ветви с сопротивлениями R?1 + R4 и R?3 + R5 соединены параллельно.

2.4.Преобразование звезды сопротивлений
в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений R?1-R?2-R?3, включенных между узлами 1-2-3.


2.5. Преобразование звезды сопротивлений
в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

 

 

Анализ электрических цепей постоянного тока с одним источником энергии

3.1. Расчет электрических цепей постоянного тока
с одним источником методом свертывания

В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению. Определяют ток в упрощенной схеме, затем возвращаются к исходной схеме и определяют в ней токи.
Рассмотрим схему на рис. 3.1. Пусть известны величины сопротивлений R1, R2, R3, R4, R5, R6, ЭДС Е. Необходимо определить токи в ветвях схемы. .


Рис. 3.1 Рис. 3.2 Сопротивления R4 и R5 соединены последовательно, а сопротивление R6 - параллельно с ними, поэтому их эквивалентное сопротивление

После проведенных преобразований схема принимает вид, показанный на рис. 3.2, а эквивалентное сопротивление всей цепи

Ток I1 в неразветвленной части схемы определяется по формуле:

Найдем токи I2 и I3 в схеме на рис. 3.2 по формулам:

I3 = I1 - I2 - формула получается из уравнения, составленного по первому закону Кирхгофа:

I1 - I2 - I3 = 0.

Переходим к исходной схеме на рис. 3.1 и определим токи в ней по формулам:

I6 = I3 - I4 (в соответствии с первым законом Кирхгофа I3 - I4 - I6 =0).

3.2. Расчет электрических цепей постоянного тока
с одним источником методом подобия
или методом пропорциональных величин

Возьмем электрическую схему на рис. 3.1, зададимся произвольным значением тока Ч в сопротивлении R6, наиболее удаленном от источника питания. По заданному току и сопротивлению R6 определим напряжение . Далее определим:

 

, ,

, ,

; .

Находим значение ЭДС

.

Найденное значение ЭДС отличается от заданной величины ЭДС Е.

Вычислим коэффициент подобия . Умножим на него полученные при расчете значения токов и напряжений, находим действительные значения токов цепи.

4. Анализ сложных электрических цепей с несколькими источниками энергии

4.1. Метод непосредственного применения
законов Кирхгофа

На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи.
В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Укажем произвольно направления токов. Запишем уравнения::


(4.1)

 


Рис. 4.1

Сложим эти уравнения. Получим тождество 0 = 0. Система уравнений (4.1) является зависимой.
Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n - 1.
Для схемы на рис. 4.1 число независимых уравнений равно трем.

(4.2)

Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры.
Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.

(4.3)

Решив совместно системы уравнений (4.2) и (4.3), определим токи в схеме.
Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.

Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа.
Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.
На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 - контурные токи.


Рис. 4.2
Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов.
В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура.
Собственные сопротивления контуров схемы

, .

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

где R12 - общее сопротивление между первым и вторым контурами;
R21 - общее сопротивление между вторым и первым контурами.
E11 = E1 и E22 = E2 - контурные ЭДС.
В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,

.

Собственные сопротивления всегда имеют знак "плюс".
Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению.
Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях.
Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.
В схеме на Рис. 4.2

.

Рекомендации

Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам.
Контурные токи желательно направлять одинаково (по часовой стрелке или против).
Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным.
Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

 

4.3. Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы ?4 = 0.



Рис. 4.3

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

где - проводимость первой ветви.

,

где - проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11 = g1 + g2 - собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле.
g12 = g2 - общая проводимость между узлами 1 и 2.
Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.


- сумма токов источников, находящихся в ветвях, сходящихся в узле 1.
Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла - со знаком "минус".
По аналогии запишем для узла 2:

(4.8)
для узла 3:

(4.9)
Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы ?1, ?2, ?3, а затем по закону Ома для активной или пассивной ветви найдем токи.
Если число узлов схемы - n, количество уравнений по методу узловых потенциалов - (n - 1).

Замечание.

Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.

4.4. Метод двух узлов

Схема на рис. 4.4 имеет два узла. Потенциал точки 2 примем
равным нулю ?2 = 0. Составим узловое уравнение для узла 1.

,

,

Рис. 4.4

где , , - проводимости ветвей.

В общем виде:

.

В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.
После вычисления величины потенциала ?1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

4.5. Метод эквивалентного генератора

Этот метод используется тогда, когда надо определить ток только в одной ветви сложной схемы.
Чтобы разобраться с методом эквивалентного генератора, ознакомимся сначала с понятием "двухполюсник".
Часть электрической цепи с двумя выделенными зажимами называется двухполюсником. Двухполюсники, содержащие источники энергии, называются активными. На рис. 4.5 показано условное обозначение активного двухполюсника.
Двухполюсники, не содержащие источников, называются пассивными. На эквивалентной схеме пассивный двухполюсник может быть заменен одним элементом - внутренним или входным сопротивлением пассивного двухполюсника Rвх. На рис. 4.6 условно изображен пассивный двухполюсник и его эквивалентная схема.

Рис. 4.5 Рис. 4.6

Входное сопротивление пассивного двухполюсника можно измерить.
Если известна схема пассивного двухполюсника, входное сопротивление его можно определить, свернув схему относительно заданных зажимов.
Дана электрическая цепь. Необходимо определить ток I1 в ветви с сопротивлением R1 в этой цепи. Выделим эту ветвь, а оставшуюся часть схемы заменим активным двухполюсником (рис. 4.7).
Согласно теореме об активном двухполюснике, любой активный двухполюсник можно заменить эквивалентным генератором (источником напряжения) с ЭДС, равным напряжению холостого хода на зажимах этого двухполюсника и внутренним сопротивлением, равным входному сопротивлению того же двухполюсника, из схемы которого исключены все источники (рис. 4.8). Искомый ток I1 определится по формуле:

(4.10)

Рис. 4.7 Рис. 4.8

Параметры эквивалентного генератора (напряжение холостого хода и входное сопротивление) можно определить экспериментально или расчетным путем.
Ниже показан способ вычисления этих параметров расчетным путем в схеме на рис. 4.2. Изобразим на рис. 4.9 схему, предназначенную для определения напряжения холостого хода. В этой схеме ветвь с сопротивлением R1 разорвана, это сопротивление удалено из схемы. На разомкнутых зажимах появляется напряжение холостого хода. Для определения этого напряжения составим уравнение для первого контура по второму закону Кирхгофа

 

,

откуда находим

, (4.11)

где определяется из уравнения, составленного по второму закону Кирхгофа для второго контура

. (4.12)

Так как первая ветвь разорвана, ЭДС Е1 не создает ток. Падение напряжения на сопротивлении Rвн1 отсутствует.
На рис. 4.10 изображена схема, предназначенная для определения входного сопротивления.

.

Рис. 4.9 Рис. 4.10

Из схемы на рис. 4.9 удалены все источники (Е1 и Е2), т.е. эти ЭДС мысленно закорочены. Входное сопротивление Rвх определяют, свертывая схему относительно зажимов 1-1'

. (4.13)

Для определения параметров эквивалентного генератора экспериментальным путем необходимо выполнить опыты холостого хода и короткого замыкания.
При проведении опыта холостого хода от активного двухполюсника отключают сопротивление R1, ток I1 в котором необходимо определить. К зажимам двухполюсника 1-1' подключают вольтметр и измеряют напряжение холостого хода Uxx (рис. 4.11).
При выполнении опыта короткого замыкания соединяют проводником зажимы 1-1' активного двухполюсника и измеряют амперметром ток короткого замыкания I1кз (рис. 4.12).

Рис. 4.11 Рис. 4.12

откуда

(4.14)

 


Дата добавления: 2019-09-13; просмотров: 370; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!