Топология биполярного транзистора



Билет № 26

1. Основные параметры проводниковых материалов.

2. Топология биполярных транзисторов.

 

1) Основными характеристиками проводниковых материалов являются:

1. Удельное электрическое сопротивление.
2. Температурный коэффициент сопротивления.
3. Теплопроводность.
4. Контактная разность потенциалов и термоэлектродвижущая сила.
5. Временное сопротивление разрыву и относительное удлинение при растяжении.

 

1. Удельное электрическое сопротивление р — величина, характеризующая способность материала оказывать сопротивление электрическому току. Удельное сопротивление выражается формулой:

 

 

Для длинных проводников (проводов, шнуров, жил кабелей, шин) длину проводника l обычно выражают в метрах, площадь поперечного сечения S — в мм2, сопротивление проводника r — в ом, тогда размерность удельного сопротивления

Данные удельных сопротивлений различных металлических проводников приведены на стр. 97.

2. Температурный коэффициент сопротивления — величина, характеризующая изменение

 

сопротивления проводника в зависимости от температуры.


Средняя величина температурного коэффициента сопротивления в интервале температур t2°—t1° может быть найдена по формуле:

3. Теплопроводность — величина, характеризующая количество тепла, проходящее в единицу времени через слой вещества.

Из приведенных данных видно, что наибольшей теплопроводностью обладают металлы. У неметаллических материалов теплопроводность значительно ниже. Она достигает особенно низких значений у пористых материалов, которые применяют специально для тепловой изоляции. Согласно электронной теории высокая теплопроводность металлов обусловливается теми же электронами проводимости, что н электропроводность.

4. Контактная разность потенциалов и термоэлектродвижущая сила.

Как было указано выше, положительные ионы металла расположены в узлах кристаллической решетки, образующей как бы ее каркас. Свободные электроны заполняют решетку наподобие газа, который называют иногда «электронным газом». Давление электронного газа в металле пропорционально абсолютной температуре и числу свободных электронов в единице объема, которое зависит от свойств металла. При соприкосновении двух разнородных металлов в месте соприкосновения происходит выравнивание давления электронного газа. В результате диффузии электронов металл, у которого число электронов уменьшается, заряжается положительно, а металл, у которого число электронов увеличивается, заряжается отрицательно. В месте контакта возникает разность потенциалов. Эта разность пропорциональна разности температур металлов и зависит от их вида. В замкнутой цепи возникает термоэлектрический ток. Э. д. с, которая создает этот ток, называется термоэлектродвижущей силой (термо э. д. с).

Явление контактной разности потенциалов применяется в технике для измерения температуры при помощи термопар (см. 56). При измерении малых токов и напряжений в цепи в местах соединения различных металлов может возникнуть большая разность потенциалов, которая будет искажать результаты измерений. В этом случае необходимо подобрать материалы так, чтобы точность измерения была высокой.

5. Временное сопротивление разрыву и относительное удлинение при растяжении.

При выборе проводов, помимо сечения, материала проводов, изоляции, необходимо учитывать их механическую прочность. Особенно это касается проводов воздушных линий электропередач. Провода испытывают растяжение. Под действием

 

 

Топология биполярного транзистора

Основные процессы, используемые для изготовления n–p–n транзисторов со скрытым слоем:

· на поверхность подложки p–типа методом селективной диффузии создается скрытый слой n+ типа;

· создается кремниевая пленка n–типа толщиной 3 мкм;

· проводится глубокая диффузия акцепторной примеси, обеспечивающая электрическую изоляцию этих элементов (этот процесс наиболее сложен);

· выполняется диффузия донорной примеси для создания сильно легированной области n+ типа под коллекторным электродом;

· диффузионным способом формируется база и эмиттер;

· создаются контактные окна;

· завершающими процессами являются металлизация, проводимая для получения токоведущих дорожек, и пассивирование.

Сюда входят классические процессы обработки кремния: фотолитография, диффузия и/или ионная имплантация, эпитаксия, высокотемпературная оксидирование, металлизация, отчистка поверхности, травление и нанесение из газовой фазы защитной пленки (пассивирование).

 

Устройство (топология) биполярного транзистора:

Цифрами обозначены следующие области:

1 – разделительная диффузия р+-кремния

2 – скрытый n+-слой

3 – коллектор (n+)

4 – металлизация коллекторного окна

5 – контактное окно коллектора

6 – база (р)

7 – эмиттер

8 – металлизация эмиттерного окна

9 – контактное окно эмиттера

10 – металлизация базового окна

11 – контактное окно базы

На схеме:                                                                                                

                                                                     Б – база

                                                                     К – коллектор

                                                                     Э - эмиттер

 

 

Билет № 27

1. Проводниковые материалы высокой проводимости.

2. Топология транзисторов МДП типа.

 

1) Материалы с высокой проводимостью

Кратко – к ним относятся медь, алюминий, из сплавов – латунь, фосфористая бронза и др. К таким материалам предъявляются требования меньшего удельного сопротивления и большей прочности. Наименьшим уд. сопротивлением обладает чистый металл, любые примеси повышают сопротивление. Примесь металла, имеющего меньшее уд. сопротивление, чем основной, все равно повышает сопротивление из-за искажений в кристаллической решетке. Обработка металла тоже повышает удельное сопротивление из-за искажений кристаллической решетки.

Медь и латунь используют для изготовления проводов. В качестве проводниковых материалов также используют различные бронзы (сплавы меди), а второй по значению металл – алюминий, из него изготавливают провода и некоторые детали.

Весь материал -

К проводниковым материалам с высокой проводимостью относятся медь, алюминий и некоторые сплавы (латунь, фосфористая бронза и др.). Они широко используются для изготовления катушек электрических машин, аппаратов и приборов. К таким материалам предъявляются требования возможно меньшего удельного сопротивления и возможно большей механической прочности. Для различных случаев применения эти требования в той или иной степени уточняются. Например, для катушек машин и аппаратов выгоднее иметь меньшее удельное сопротивление даже за счет некоторого снижения механической прочности. Для воздушных же проводов контактной сети и линий электропередачи важно иметь определенную механическую прочность на разрыв.

Наименьшим удельным сопротивлением обладает чистый металл. Любые примеси повышают удельное сопротивление. Примесь другого металла, имеющего меньшее удельное сопротивление, чем основной, повышает его сопротивление. Это объясняется искажением кристаллической решетки основного металла даже небольшим количеством примеси. Кристаллическая решетка металлов искажается не только введением примесей, но и в результате механических деформаций. В связи с этим обработка металла, приводящая к пластической деформации, вызывает увеличение его удельного сопротивления. В частности, это имеет место в процессе изготовления проводов при прокатке и волочении.

Медь и латунь применяют для изготовления проводов и различных токопроводящих деталей электрических машин и аппаратов. Медные провода и шины получают прокаткой и протяжкой, при этом медь приобретает высокую механическую прочность и твердость (медь марки МП). Такую твердотянутую медь используют для изготовления коллекторных пластин, неизолированных проводов, распределительных шин и пр. При термической обработке твердотянутой меди (отжиге при температуре 330—350 °С) получают мягкую медь марки ММ, обладающую большой гибкостью и способностью сильно вытягиваться; электропроводность ее также увеличивается. Мягкую медь используют для изготовления изолированных проводов, кабелей и пр.

В качестве проводниковых материалов применяют также различные бронзы, представляющие собой сплавы меди с другими металлами. Все бронзы имеют не только более высокую механическую прочность, чем медь, но и большее удельное сопротивление. Для изготовления контактных проводов и коллекторных пластин применяют преимущественно кадмиевые бронзы, для пружин, щеткодержателей, скользящих контактов, ножей рубильников — бериллиевые бронзы. Латунь (сплав меди с цинком) имеет также по сравнению с медью высокую механическую прочность, прочность против истирания, но вместе с тем и значительно более высокое удельное сопротивление. Латунь хорошо штампуется, вытягивается, паяется и сваривается.

Вторым по значению в электротехнике проводниковым материалом является алюминий. Из него изготовляют провода, некоторые детали электрических машин и аппаратов. Так же, как и медь, он при протяжке и других видах холодной обработки получается довольно твердым, а после отжига становится мягким. Плотность алюминия около 2,6 г/см3, примерно в 3,5 раза меньше меди (ее плотность 8,9 г/см ). Для увеличения прочности, и,.улучшения механических свойств к алюминию иногда прибавляют медь, магний, марганец и кремний. Таким путем получают различные алюминиевые сплавы — силумин, дюралюминий и пр.

  По твердости различают две марки алюминия: AT — алюминий твердый неотожженный и AM — алюминий мягкий отожженный. Соединение алюминиевых проводов и других деталей производят обычно сваркой или заклепками, так как из-за высокой температуры плавления окиси алюминия, покрывающей поверхность алюминиевых деталей (примерно 2000 °С), и быстрого окисления зачищенной поверхности пайка алюминия обычным способом затруднена.

 

2) Топология транзисторов МДП типа. (Полевых транзисторов)

Самое главное – транзистор МДП типа = полевой транзистор = униполярный транзистор (а то пипец). МДП – металл-диэлектрик-полупроводник

 

Полевые, или униполярные, транзисторы в качестве основного физического принципа используют эффект поля. В отличие от биполярных транзисторов, у которых оба типа носителей, как основные, так и неосновные, являются ответственными за транзисторный эффект, в полевых транзисторах для реализации транзисторного эффекта применятся только один тип носителей. По этой причине полевые транзисторы называют униполярными. В зависимости от условий реализации эффекта поля полевые транзисторы делятся на два класса: полевые транзисторы с изолированным затвором и полевые транзисторы с затвором в виде p-n-перехода.

К полевым транзисторам с изолированным затвором относятся МДП-транзисторы, МНОП-элементы памяти, МДП-транзисторы с плавающим затвором, приборы с зарядовой связью (ПЗС-структуры), МДП-фотоприемники. К полевым транзисторам с затвором в виде p-n-перехода относятся транзисторы с затвором в виде барьера Шоттки, с затвором в виде обычного p-n-перехода и с затвором в виде гетероперехода. Отметим, что в качестве дискретных элементов разработаны и имеют применение МДП-транзисторы и транзисторы с затвором в виде обычного p-n-перехода. Остальные типы полевых транзисторов используются только в интегральном исполнении как фрагменты интегральных схем.

 

Термин «МДП-транзистор» используется для обозначения полевых транзисторов, в которых управляющий электрод - затвор отделен от активной области полевого транзистора диэлектрической прослойкой - изолятором. Основным элементом для этих транзисторов является структура металл-диэлектрик-полупроводник. По этой причине в названии транзистора используется аббревиатура МДП. Монокристаллический полупроводник n- или p-типа, на котором изготавливается МДП-транзистор, получил название подложки. Две сильнолегированные области противоположного с подложкой типа проводимости получили названия исток и сток. Область полупроводниковой подложки, находящаяся под затвором между истоком и стоком, называется каналом. Диэлектрический слой, расположенный между затвором и каналом, получил название подзатворного диэлектрика. В качестве полупроводниковой подложки в большинстве МДП-транзисторов используется GaAs и подзатворный диэлектрик. По этой причине как синоним для МДП-транзисторов применяется термин «МОП-транзистор». Канал в МДП-транзисторах может быть как индуцированным, так и встроенным.


Дата добавления: 2019-09-13; просмотров: 1361; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!