Металлический проводник и нерв



 

Конструкторское бюро природы неплохо поработало, создавая для нашей планеты миллионы живых существ, постоянно их переделывая и совершенствуя. За это время было сделано немало замечательных находок и изобретений. Какой бы новый принцип в управлении, в локации, ориентации в пространстве ни был предложен учеными, впоследствии всегда оказывается, что природа уже давным-давно его использует. Пожалуй, только с колесом природа оплошала. Колесо – единственное, что человек придумал сам.

Поэтому у нас издавна повелось сравнивать хитроумные творения природы с более простыми и более понятными выдумками человеческого гения. Такие сопоставления помогают ученым более наглядно представить многие сложнейшие явления. Хорошо известно, что танцевать легче всего от печки.

Не удивительно, что еще в прошлом веке, когда наука о мозге, главным образом о его строении, значительно продвинулась вперед, заметили аналогию между центральной нервной системой и телефонной сетью большого города. Действительно, известное сходство есть. В телефонную станцию – мозг с периферии, то есть со всех концов тела, бежит по нервам, как по проводам, беспрерывный поток информации. В глубинах мозга нужная информация отбирается, сортируется и направляется в строго определенные отделы, которые обмениваются между собой впечатлениями, обсуждают полученную информацию. После непродолжительных взаимных консультаций принимается решение, и вот уже по нервам на периферию к мышцам, железам, ко всем органам несутся приказы.

Сходство усиливается тем, что и по телефонным проводам и по нервам бежит электричество. В этом убедился еще Гальвани. С тех пор десятки тысяч опытов подтвердили, что раздражение любых органов чувств кодируется в электрические импульсы и в таком виде попадает в мозг. Да и в мозгу вся информация, циркулирующая между различными его отделами, передается в виде электрических импульсов.

Если бы работой такой телефонной сети заинтересовался инженер, его больше всего удивило бы, что электрические импульсы распространяются страшно медленно: в нервной сети млекопитающих всего со скоростью 0,5–100 метров в секунду.

Напомним, что электрический ток является упорядоченным движением электронов. И хотя сами электроны движутся со скоростью порядка одного миллиметра в секунду, электромагнитное поле, которое вызывает их движение, распространяется почти со скоростью света. Поэтому если в Москве на электрический кабель подать напряжение, на другом его конце во Владивостоке, за 10 тысяч километров от Москвы, электроны придут в движение уже через 1/30 секунды.

Еще больше изумился бы инженер, замерив сопротивление отдельных нервных волокон, составляющих нервный ствол. Оно очень велико. Один метр нервного волокна имеет такое же сопротивление, как 16 миллиардов километров обычного медного провода. Поразмыслив, инженер сделал бы вывод, что в такой телефонной сети сообщения могут передаваться только в том случае, если ее линии передачи оснащены усилительными подстанциями.

Такое утверждение недалеко от истины. Действительно, возбуждение распространяется не за счет энергии рецептора или нервного центра, а за счет энергии, вырабатываемой нервом.

Волокна, из которых складываются нервы, являются отростками нервных клеток. Диаметр их, равный 0,1–10 микрон, ничтожен в сравнении с длиной. В нервной сети млекопитающих встречается два вида нервных волокон: тонкие – голые, одетые лишь тончайшей, невидимой в оптический микроскоп оболочкой, и мякотные, покрытые толстой миелиновой оболочкой.

Целесообразность оболочки не вызывает сомнения, она является изолятором, отделяющим друг от друга волокна, тесно упакованные в нервном стволе. Миелиновая оболочка предотвращает переход возбуждения с одного волокна на другое и возникновение в связи с этим невообразимой путаницы. Единственно, чего не понимали ученые, почему верхняя изолирующая оболочка не сплошная, как рубашка у любого кабеля, а состоит из отдельных фрагментов около миллиметра длиной. Между ними есть небольшие промежутки, так называемые перехваты Ранвье, в которых нервное волокно остается оголенным.

Собственная тонкая оболочка нервного волокна избирательно проницаема для одних веществ и не пропускает другие. Через нее свободно проходят катионы калия и водорода, но она служит непреодолимой преградой для более крупных катионов, например катиона натрия, а кроме того, не пропускает анионы. (Как известно, катионы несут положительный заряд, анионы, наоборот, заряжены отрицательно.)

Обычно концентрация ионов по обе стороны оболочки не одинакова: ионов натрия и хлора внутри волокна в 10 раз меньше, чем в тканевых жидкостях, зато ионов калия в 20 раз больше. Поэтому катионы калия устремляются наружу и создают на внешней поверхности нервного волокна положительный заряд. Анионы не могут последовать за калием и, скапливаясь на внутренней поверхности волокна, создают здесь отрицательный заряд. Вот почему в покое внутренняя сторона мембраны всегда заряжена отрицательно, а наружная – положительно. Разность этих зарядов, или, иначе, потенциал покоя, равняется 50–70 милливольтам.

Потенциал покоя сохраняется лишь до тех пор, пока в нервном волокне не возникло возбуждение. Если какой-то раздражитель, падающий на нервную клетку, нервное окончание или на любой другой участок нервного волокна, вызвал в этом месте возбуждение, то проницаемость мембраны немедленно, хотя и на короткий срок, меняется. Она начинает пропускать ионы натрия, которые устремляются внутрь, благодаря чему оболочка волокна перезаряжается: становится электроотрицательной снаружи и электроположительной внутри. В результате два соседних участка протоплазмы волокна, ничем между собой не разделенные, окажутся противоположно заряженными.

Такое положение сохраняться не может, между соседними участками потечет электрический ток, возникнет электрический импульс. Электрический ток вызовет возбуждение соседнего, ранее отрицательно заряженного участка волокна, что тотчас же сделает его оболочку проницаемой для натрия и изменит заряд на положительный. А как только это произойдет, между вновь возбужденным и следующим участком волокна потечет электрический ток, и все повторится сначала. Из бесконечного повторения этого процесса и складывается прохождение по волокну нервного импульса.

Так распространяется возбуждение в тонких, не покрытых миелином волокнах. Там же, где есть миелиновая изоляция, возникновение таких коротеньких петель тока невозможно, и весь процесс развертывается лишь в перехватах Ранвье. (Вот, оказывается, для чего они существуют!) В миелиновых волокнах возбуждение распространяется скачками от одного перехвата к другому и движется поэтому гораздо быстрее, чем в тонких волокнах.

Таким образом, электрический ток в металлическом проводнике – это упорядоченное движение электронов, практически сразу возникающее на всем его протяжении, а нервный импульс – это движение возбудительного процесса вдоль нервного волокна, которое сопровождается возникновением электрического тока, вызывающего, в свою очередь, возбуждение соседнего участка.

Такой способ распространения возбуждения объясняет две интересные особенности нервного импульса. Во-первых, проходя по длинному волокну, нервный импульс ничуть не затухает, оставаясь постоянным по величине в начале и в конце своего пути. Во-вторых, все импульсы, идущие по волокну, совершенно одинаковы. Они не отражают силы или особенностей раздражителя, вызвавшего нервный импульс, а зависят только от свойств нервного волокна, по которому распространяются.

Эти положения были однажды проиллюстрированы в очень интересном опыте. По краю купола у медуз проходит нервное кольцо. (По своему устройству оно существенно отличается от нерва, но в данном случае это не имеет значения.) Импульс по кольцу медузы, как по нерву, может распространяться в обе стороны. Если раздражать какой-то участок кольца, импульсы побегут в обе стороны и, встретившись на противоположной стороне купола, погасят друг друга.

Опыт, о котором идет речь, интересен тем, что ученым удалось, вызвав возбуждение на определенном участке кольца, блокировать соседний. Поэтому возбуждение могло распространяться лишь в одну сторону. А когда нервный импульс обежал кольцо, блокада была снята, и он беспрепятственно проследовал через это место, совершив второй, третий, четвертый виток. Целые сутки длился опыт, а импульс все бежал и бежал, не замедляя скорости, не уменьшаясь в величине. Опыт мог бы продолжаться и дольше, до тех пор, пока животное не погибло бы или не наступило полное его истощение.

 

Электростанция под водой

 

Европейцам от первого знакомства с электричеством до внедрения его в технику потребовалось почти две с половиной тысячи лет. Врачи начали использовать его в своей практике значительно раньше, хотя даже понятия об электричестве не имели. Многие выдающиеся врачи Римского государства, такие, как Клавдий Гален, лечили людей электричеством, пользуясь живыми электростанциями обитателей морских глубин – рыб.

В Средиземном и других морях земного шара водятся довольно крупные скаты. Римляне знали, каким удивительным образом добывают они себе пищу. Эти рыбы не гоняются за добычей, не выскакивают на нее из засады. Спокойно, не торопясь, плывут в толще воды, но, как только поблизости оказываются мелкие рыбы, крабы или осьминоги, с ними что-то происходит: начинаются судорожные конвульсии, миг-другой, и неосторожное животное мертво. Скат подбирает свою добычу и не торопясь отправляется дальше.

Римляне думали, что удивительные рыбы, увидев добычу, выделяют в воду какое-то ядовитое вещество. Яд действовал и на человека, причем прямо через кожу, но не был для него смертелен. Прикосновение к рыбе ощущалось как удар, рука невольно отдергивалась. Римские врачи считали яд скатов очень полезным лекарством. Ради него их отлавливали и содержали в морских садках.

Так думали две тысячи лет назад. Только сравнительно недавно была разгадана поистине удивительная тайна этих рыб. Опасные хищники оказались живой электростанцией, способной вызывать разряд такой силы, что находящиеся вблизи мелкие животные гибнут. То, что римляне приписывали действию яда, в действительности было электричеством. Впоследствии выяснилось, что существует немало «электрических» рыб и некоторые из них гораздо опаснее ската.

Весть о такой чудовищной электростанции дошла до европейцев значительно позже. Вскоре после открытия Америки туда хлынул поток жестоких и жадных до золота авантюристов. Им и довелось испытать на себе силу электрических разрядов этой интересной рыбы.

Еще первые завоеватели Америки – испанцы создали миф о затерянной в джунглях южного материка сказочно богатой стране Эльдорадо, где даже мостовые выложены булыжниками из чистого золота. На поиски загадочной страны снаряжался отряд за отрядом. Одному из таких отрядов под командованием Де Сикка удалось проникнуть в верховья Амазонки. Несколько месяцев плыли они вверх по реке, прежде чем достигли ее истоков. Огромная река, один из притоков Амазонки, превратилась здесь в небольшой ручеек. Дальше плыть по воде стало невозможно, и отряд двинулся в джунгли.

Дорогу преграждали непроходимые заросли, страшные топкие болота. Опасность подстерегала на каждом шагу: огромные крокодилы, ядовитые змеи и удавы, племена враждебно настроенных индейцев, уже знавших, что несут с собой белые завоеватели, и несметные тучи комаров и москитов, заражающих людей малярией, тропической лихорадкой и другими опасными болезнями. Каждый метр пути приходилось буквально прорубать в сплошной зеленой стене джунглей.

Однажды отряд Де Сикка вышел на окраину огромного болота. Был засушливый период года, и болото почти высохло. Лишь вдали, в самом центре, в лучах полуденного солнца поблескивали лужи еще сохранившейся воды. Европейцы свободно вздохнули: на несколько часов дорога обещала быть легкой.

Все шло хорошо, пока отряд не достиг цепочки соединенных между собой мелких луж в центре болота. Индейцы-носильщики категорически отказались войти в воду. В глазах их отражался ужас. Европейцы никак не могли понять, в чем дело. Лужи были такие мелкие, что в них не могли спрятаться ни крокодилы, ни гигантские анаконды. Гроза южноамериканских рек ужасные рыбы пирайи также не могли здесь оказаться.

Один из европейцев пошел вперед, чтобы подать пример испуганным носильщикам. Но едва он сделал несколько шагов, как с нечеловеческим криком рухнул навзничь, точно сбитый с ног могучим ударом. Два товарища, бросившиеся ему на помощь, через секунду оказались в грязи, опрокинутые все тем же невидимым противником.

Лишь через несколько часов их спутники отважились осторожно войти в воду и вынесли на сушу своих пострадавших товарищей. Все трое остались живы, но продолжать путь отряд уже не смог. У жертв невидимого врага ноги были парализованы. К вечеру движение ног начало восстанавливаться, но только через несколько дней больные окончательно выздоровели. Суеверный, как и все конкистадоры, Де Сикка решил вернуться назад.

Так впервые европейцы узнали еще об одной подводной электростанции, которая находится в теле довольно крупной рыбы – пресноводного электрического угря. Рыбы эти имеют внушительные размеры – 1,5–2 метра в длину и весят до 15–20 килограммов.

Электрические угри – ночные животные. Охотятся они только после наступления темноты. Сила электрического удара так велика, что рыба может оглушить даже крупных зверей. Мелкие животные погибают мгновенно. Южноамериканские индейцы очень хорошо знают опасную рыбу и не рискуют переходить вброд реки, где она обитает.

На языке индейцев-томанаков угри называются «арима», что значит «лишающий движения». Их мясо, а также вызываемые ими электрические разряды у многих местных племен считаются лечебными. Возможно даже, что электролечением в Америке начали заниматься значительно раньше, чем в Европе, но вряд ли точную дату его возникновения удастся когда-нибудь установить.

После того что было сказано в начале главы, вряд ли показалось бы странной способность рыб вырабатывать электрический ток, если бы речь шла лишь о слабых разрядах, а не о таких внушительных, какие способны генерировать подводные электростанции: африканский сом, американский угорь и морской скат.

Напряжение электрического тока, создаваемое сомами, достигает 400, а угрями 600 вольт! (Для сравнения напомним, что напряжение тока в бытовой электросети наших городов и сел всего 127–220 вольт.) При этом мощность электростанций угря равняется 1000 ватт. Высокое напряжение электрического тока угрю необходимо потому, что пресная вода является очень плохим проводником электричества. Ток меньшего напряжения был бы опасен только на очень близком расстоянии. Напряжение, создаваемое морским скатом, значительно меньше, не превышает 60 вольт (морская вода – прекрасный проводник), зато сила тока достигает 60 ампер. Все очень внушительные цифры!

Как же удалось природе создать свои живые электростанции? Что явилось их прообразом?

Самый значительный ток у обычных животных вырабатывается в крупных мышцах: в сердце и в двигательной мускулатуре. Вокруг некоторых плывущих рыб можно обнаружить электрическое поле. Оно особенно велико у круглоротых (миног и миксин) и древних, примитивных рыб, которые еще не научились экономно расходовать энергию. Вокруг головы плывущей миноги можно зарегистрировать электрические импульсы напряжением в несколько сот микровольт.

Было бы странно, если бы природа не смогла использовать это явление. Видимо, в тот период, когда на Земле появились рыбы, она увлеклась электротехникой. Она только что закончила вчерне создание мозга и периферических нервов (командно-коммуникационного органа с его сложным электрохозяйством) и теперь прикидывала, какую еще пользу можно извлечь из электричества. Нужно отдать должное, поиски не были напрасными. Во всяком случае, в жизни рыб электричество выполняет более разнообразные функции, чем у других животных.

Так называемые электрические рыбы пошли по пути создания мощных электростанций. Основой для них послужили мышцы и нервные окончания, так называемые концевые пластинки, которые превратились в пластинки электрического органа.

Электрические органы очень велики: их вес составляет 1/4–1/3 часть веса рыбы, у угря они достигают 4/5 длины рыбы, а у сома покрывают все тело. Орган состоит из огромного количества пластинок, собранных в столбики. Все пластинки в столбиках соединены последовательно, а сами столбики – параллельно.

Сокращение скелетных мышц, давших начало электрическим органам, вызывается нервным импульсом, который сопровождается электрическим разрядом. Когда импульс достигает нервных окончаний в мышечных тканях, здесь выделяется особое вещество – медиатор (переносчик), которое вызывает сокращение мышечных клеток, также сопровождающееся возникновением электрических разрядов. Создавая электрический орган, природа использовала концевые пластинки и видоизмененные мышечные клетки, лишив их способности сокращаться, но сохранив за ними функцию генерации электрического импульса.

Механизм возникновения электрического импульса в пластинках электрического органа ничем существенным не отличается от генерации его в нерве, концевой пластинке или мышечном волокне. Даже величина импульса – 150 милливольт является обычной для нервных и мышечных клеток. Однако благодаря тому, что у угря пластинки собраны в столбики по 6–10 тысяч, соединенные последовательно, общее напряжение может достигать 600 вольт. У скатов пластинок в каждом столбике немного, не больше 1000, зато столбиков, соединенных параллельно, около 200, поэтому напряжение тока оказывается небольшим, а его сила значительной.

Чтобы управлять таким сложно устроенным органом, понадобилось создать специальный командный пункт. Поэтому у электрических рыб появился особый отдел мозга – электрические доли и овальные ядра в продолговатом мозгу. Овальные ядра – верховный командный пункт, который принимает решение о применении грозного оружия и отдает приказ в электрические доли. Здесь совершается самая сложная работа по координации разряда. Ведь для того чтобы разряд достиг максимальной силы, все пластинки должны разрядиться строго одновременно. Этим и заняты электрические доли.

Чтобы одновременно дать разряд, все пластинки должны одновременно получить соответствующий приказ, нервный импульс. Вот в этом-то и состоит трудность. Нервный импульс распространяется относительно медленно, в спинном мозгу рыб со скоростью 30 метров в секунду. Поэтому пластинки, лежащие в начале органов, вблизи головы, получат приказ значительно раньше, чем в конце, расположенные на полтора метра дальше.

Как электрические рыбы добиваются, чтобы приказы приходили одновременно? Возможно, приказы к хвостовой части органа посылаются раньше, чем к головной, а может, рыбы регулируют скорость распространения нервного импульса. Характер управления в течение жизни меняется: рыбы растут, электрические органы у них становятся больше, и команды приходится посылать по-другому.

 

Локаторы и осциллографы

 

Угорь, скат и сом не единственные рыбы, имеющие электрические органы. В настоящее время известно около 300 других видов рыб, способных давать слабые электрические разряды напряжением от 0,2 до 2 вольт. Первоначально ученые думали, что эти рыбы убивают очень мелких животных. Но тщательные наблюдения не подтвердили этого предположения. Лишь недавно стало понятно, зачем нужны электрические органы, вырабатывающие очень слабый электрический ток.

Совершенствование электрооснащенности у этих рыб пошло не в сторону увеличения силы разрядов, а по пути усиления электрочувствительности. Было замечено, что многие из них живут в очень мутной воде и ведут ночной образ жизни, а некоторые, например нильский длиннорыл, постоянно разыскивают корм, засунув голову глубоко в ил. В мутной воде или ночью своевременно заметить опасного хищника очень трудно. У электрических рыб возникло удивительное приспособление, позволяющее обнаруживать приближение врага даже в полной темноте.

В отличие от рыб, использующих электричество для охоты, у нильского длиннорыла есть не только электростанция, но и специальный орган, очень чувствительный к электричеству. Электростанция генерирует 300 разрядов в секунду, создавая вокруг рыб слабое электрическое поле очень постоянной формы с силовыми линиями, сходящимися на уровне головы. Электрические рыбы в отличие от всех остальных даже плавают, не изгибая собственного тела, чтобы не нарушить окружающее их электрическое поле. Если же вблизи появится крупная рыба, однородность электрического поля нарушится. Тело рыбы более электропроводно, чем окружающая пресная вода, поэтому силовые линии сдвинутся в сторону приближающейся рыбы. Электрочувствительные приборы длиннорыла это сразу улавливают, и он бросается наутек.

Своеобразный локатор служит рыбам не только для того, чтобы спасаться от врагов. С его помощью они свободно обходят препятствия, так же как летучие мыши с помощью своего эхо-локатора. Большинство предметов, с которыми рыбы могут столкнуться в воде, плохо проводят электричество. Силовые линии от таких предметов отталкиваются, что позволяет длиннорылам отличать одушевленные предметы от неодушевленных.

С помощью электрической локации находят свою добычу морские и пресноводные миноги. В мутной воде пресноводных водоемов эта способность особенно необходима. Удивительное существо – рыба-нож, живущая у берегов Америки, в тропической части Атлантического океана, несет свой локатор на хвосте. Поэтому расселины между скал и проходы в подводной растительности она исследует, пятясь задом и засовывая хвост в каждую дырку. Такой способ очень удобен, он всегда позволяет рыбе вовремя удрать, если в засаде ждет враг.

Близкий родственник длиннорылов – гимнарк пользуется радаром во время охоты, точно определяя с его помощью местонахождение своей добычи. Чтобы радар длиннорылов и других рыб удовлетворял своим требованиям, воспринимающие ток органы, расположенные в коже, должны обладать очень тонкой чувствительностью. Действительно, гимнарк «замечает» изменения силы электрического тока всего в 0,000000000000003 ампера! Такая чувствительность дает возможность рыбе отличить нормального пескаря от наживки, в теле которой рыболовы спрятали крохотный стальной крючок. Можете быть уверенными, опасную приманку гимнарк обойдет стороной.

Высокой электрочувствительностью наделены многие рыбы и даже амфибии. Органом, воспринимающим электричество, служит у них боковая линия, а у скатов – ампулы Лоренцини.

Чемпионом, вероятно, является скат хвостокол, или морской кот, как его нередко у нас называют. Эта очень широко распространенная рыба обитает и в Черном море, хотя на прилавках магазинов вы ее не увидите. Морского кота у нас не едят, что в общем-то и не совсем заслуженно: мясо у ската действительно жестковато, но печень ничем не уступает тресковой.

Рыбаки не любят иметь дело с морским котом. Они с презрением выкидывают пойманных скатов обратно в море и нещадно проклинают их, когда приходится выпутывать из сетей злополучную рыбу. Проклятья отнюдь не случайны, морской кот умеет отлично «царапаться». Длинная, острая, вся в мелких зубчиках игла, которой украшен хвост ската, слегка ядовита, и глубокие резаные раны, нанесенные ударами хвоста, очень болезненны и нередко подолгу не заживают.

Морской кот не приносит ни большой пользы, ни большого вреда, видимо, поэтому мы мало интересуемся этой рыбой и не очень много о ней знаем. Между тем скат – одна из интереснейших рыб Советского Союза. Ампулы Лоренцини, расположенные на голове морского кота, способны воспринимать ничтожный ток. Устройство их несложно. Тоненькая трубочка, ведущая в глубь кожи, заканчивается небольшим вздутием, на дне которого лежат чувствительные клетки. Рецепторы настолько чувствительны, что не уступают лучшим осциллографам. С их помощью скат может улавливать биоэлектрические потенциалы, возникающие в теле других рыб. Это позволяет ему находить на песчаных пляжах ловко замаскированных молоденьких камбал, ориентируясь лишь по ритмическим электрическим разрядам, возникающим в мускулатуре во время дыхательных движений, и нападать на ничего не подозревающих рыб.

Подводный осциллограф – находка для парапсихологии. Тот, кому доводилось наблюдать в море за поведением типично стайных рыб: ставриды, скумбрии, зубариков, – вероятно, не раз восхищался слаженностью маневров стаи, когда десятки, сотни или даже тысячи рыб одновременно как по команде меняют направление движения. Кто дает эту команду, как она передается, ученые пока не знают. Возможно, для «передачи мыслей» на расстояние рыбы пользуются слабыми электросигналами. Ведь биотоки возникают во всех мышцах и нервах и еще раньше в мозгу, который посылает в рабочие органы свои приказы. Эти распоряжения могут передаваться и за пределы рыбы, ведь морская вода отличный электропроводник.

 

 

Служба информации

 

Универсальная антенна

 

Целый день в наш мозг по бесчисленным каналам связи поступает информация. В слуховом нерве 30 000 проводов-волокон, в зрительном нерве их еще больше, около 900 000. Объем информации, поступающей только из слухового аппарата, равен десяткам тысяч бит в секунду, информация глаз достигает миллионов бит! Мозг должен в ней разобраться, выявить главную, отделив ее от второстепенной или совсем ненужной. Ведь усвоить он способен всего 50 бит в секунду.

Утром, прежде чем проснувшийся мозг сможет заняться этой работой, ему необходимо наладить приемные устройства, чтобы обеспечить бесперебойное поступление важнейших сообщений. Дело это совсем не легкое. Организм человека и животных обладает множеством самых различных приемных устройств, каждое из которых способно воспринимать лишь определенным образом закодированную информацию.

Сколько же каналов связи у организма? Сколько способов извлечения информации ему известно?

Приемные устройства для извлечения информации, или рецепторы, в обыденной жизни принято называть органами чувств. Их много. Специалисты называют шесть основных: зрение, слух, равновесие, вкус, обоняние и кожную чувствительность.

Ну, а не основные просто невозможно перечислить. Только в коже находится масса рецепторов: одни реагируют на легкое прикосновение (они обеспечивают осязание), другие – на более сильное воздействие, и раздражение их воспринимается как боль. Третьи реагируют только на холод, четвертые ощущают только тепло. Это лишь начало списка кожных рецепторов, на самом деле их значительно больше.

А сколько рецепторов имеют внутренние органы: одни определяют качество пищи, попавшей в желудок, другие уровень кровяного давления, третьи количество растворенного в крови углекислого газа. Мы даже не осознаем их работу. До нашего сознания просто не доходит информация, которую рецепторы внутренних органов беспрерывно шлют мозгу.

Ученые давно изучают устройство и работу органов чувств. Особенно усилились эти исследования в последние годы, с тех пор как появился электронный микроскоп. Это понятно, ведь обычный увеличивает от силы в тысячу – полторы тысячи раз, зато электронному доступны громадные увеличения – в 20, 40, 60, а то и в 100 тысяч раз! Не удивительно, что он помог ученым подсмотреть много нового.

Выяснилась удивительная вещь: у всех живущих на Земле животных рецепторные клетки (они воспринимают раздражения) любых органов чувств обнаруживают огромное сходство в своем строении. Оказывается, любая из них обязательно снабжена подвижным волоском, или жгутиком. В устройстве жгутиков разных рецепторных клеток тоже много общего. Внутри проходят две центральные опорные фибриллы (волокна), окруженные кольцом из девяти пар подвижных фибрилл. Только в очень редких случаях этот жгутик бывает видоизменен.

Жгутики играют для рецепторной клетки такую же роль, как антенна для радиоприемника. Их так и называют рецепторными антеннами. При их помощи мы и воспринимаем окружающий мир. Антенны рецепторных клеток глаза реагируют на световую энергию – фотоны. В органе обоняния антенны воспринимают энергию молекул пахучих веществ. Антенны слуховых клеток реагируют на звук – энергию звуковой волны.

Чувствительность антенн поразительна. Достаточно энергии одного фотона, самой маленькой порции света, чтобы зрительная клетка возбудилась. Для антенны обонятельной клетки – одной молекулы пахучего вещества. Слуховая клетка возбуждается, когда колебания барабанной перепонки достигают размаха всего 0,0000000006 миллиметра. Это в десять раз меньше диаметра самого крохотного атома – атома водорода.

Антенны всю жизнь находятся в беспрерывном движении. Без этого нельзя воспринимать раздражения внешнего мира. Движущиеся антенны ведут активный поиск раздражителей.

Сходство между рецепторными клетками различных органов чувств, конечно, не полное. Есть и серьезные различия. В зрительных клетках, например, содержится особое вещество, называемое зрительным пурпуром, которое изменяется под действием света. Благодаря этой фотохимической реакции и происходит восприятие света. В рецепторных клетках других органов чувств пурпура нет. С помощью каких веществ они воспринимают раздражители, ученым пока неизвестно.

Почему так много сходства в строении различных рецепторных клеток, сказать трудно. Видимо, конструкция оказалась очень удачной, поэтому природа, создавая самые разнообразные органы чувств, и использовала типовые, стандартные детали.

Прошли миллионы лет, животный мир на нашей планете проделал огромный путь развития от примитивных одноклеточных существ, почти не воспринимающих раздражения окружающего мира, до современного человека с его многочисленными, очень совершенными и чрезвычайно чувствительными органами чувств. Кажется, между человеком и инфузорией не осталось ничего общего. Но нет! Рецепторные клетки человека и птиц, рыб и насекомых, моллюсков и других животных воспринимают окружающий мир, любые его раздражения, любыми органами чувств с помощью сходно устроенных подвижных антенн. Даже одноклеточные организмы, такие, как эвглена, и они используют все ту же подвижную антенну. Вот что значит удачная конструкция. Она проходит не только через века и тысячелетия. Для нее не страшны даже миллиарды лет. Живые организмы Земли пронесли подвижную антенну от самого зарождения жизни до наших дней.

 

Откуда все пошло

 

Из шести основных органов чувств наиболее важны три. Потеря вкуса, а тем более обоняния проходят для нас почти незаметно. Даже с потерей осязания можно было как-то мириться, но потеря зрения, слуха или чувства равновесия делает человека тяжелым инвалидом. Для нас это самые главные системы восприятия внешнего мира. Они не совсем совпадают с главными анализаторными системами животных. Многие представители животного царства обладают весьма слабым зрением или совсем лишены удовольствия видеть окружающий мир. Некоторые не воспринимают звуки или слышат очень плохо и прекрасно без этого обходятся.

Зато орган равновесия – очень важная анализаторная система. Она есть почти у всех многоклеточных животных. Даже у одноклеточных зоологи нашли какие-то образования, отдаленно напоминающие орган равновесия более высокоразвитых животных. Таким устройством снабжены паразитические инфузории. У них есть особая вакуоль – небольшой, поверхностно расположенный пузырек с какими-то кристаллическими включениями, – очень напоминающая статоцисты (орган равновесия) многоклеточных. Если впоследствии подтвердится, что она действительно выполняет эту функцию, ничего удивительного не будет. Ведь на планете немало мест, погруженных в непроглядный мрак ночи, можно найти уголки, куда не проникает ни один звук, но земное притяжение действует везде, от него скрыться некуда.

Можно предполагать, что жизнь возникла не без участия света. Во всяком случае, светочувствительность, которой, вероятно, уже обладало первичное живое вещество, очень быстро привела к возникновению специальных органов зрения. Свет воспринимают даже современные одноклеточные животные – жгутиконосцы. У одноклеточных, особенно у пиридиней, среди которых многие способны светиться, глазки могут быть довольно крупными. Они представляют собой чашеобразной формы скопление красноватого жироподобного светочувствительного пигмента, расположенного в передней части пиридинеи у основания жгутика. В углублении пигмента лежит прозрачное зерно крахмала, выполняющее светопреломляющую и фокусирующую функцию.

Из названных выше трех главных для человека органов чувств два являются более древними: зрение и равновесие. Еще одна интересная особенность роднит между собой эти в общем-то несхожие органы чувств. И орган зрения и орган равновесия, хотя создавались и совершенствовались не один десяток лет и, конечно, претерпели за это время очень большие изменения, все же по своему устройству и особенностям работы различаются меньше, чем устройство слухового анализатора и особенности восприятия звука у различных животных. Такое отличие объясняется тем, что зрение и равновесие формировались под влиянием единого, постоянно действующего фактора космического масштаба: равновесие под действием земного притяжения, зрение под воздействием солнца. А единого, равноценного источника звука на Земле нет и раньше тоже не существовало.

Когда на планете зарождалась жизнь, здесь было удивительно тихо, а такие звуки, как раскаты грома или грохот волн, разбивающихся о пустынные мрачные скалы первобытных морей, большинство животных не интересовали. Только когда сами животные достигли достаточно высокого уровня развития, научились активно передвигаться, начали странствовать по белу свету и пожирать друг друга, на Земле появился слабый шумок. Это возникли звуки биологического происхождения, создаваемые самими животными. Они-то и породили слуховой анализатор, а вслед за ним и слуховую сигнализацию, получившую затем очень широкое распространение.

Множество самых разнообразных источников звуков потребовало создания такого же разнообразия воспринимающих приборов, от очень широкого диапазона до способных улавливать лишь очень узкую полосу звуков.

Некоторые летучие мыши, хотя и слышат лучше всего очень высокие звуки, доходящие до 300 килогерц, могут улавливать и самые низкие. Их орган слуха охватывает 15 октав. Ночным бабочкам, которыми питаются летучие мыши, такой колоссальный слуховой диапазон ни к чему. Их тимпанальный орган, расположенный в крыльях, способен улавливать только ультразвуковые импульсы летучих мышей. Такая ограниченная задача породила очень простое устройство. Тимпанальный орган состоит из мембраны, воздушных мешков и всего двух чувствительных нервных клеток. Их задача – воспринять звук, издаваемый летучей мышью, и дать команду на немедленное изменение направления полета.

Зрительному анализатору, развивавшемуся лишь под действием солнца, большой широты не потребовалось. Глаза самых разных животных способны воспринимать световой поток шириною не более трех октав. Таким образом, диапазон световосприятия в пять раз уже звукового.

На нашей планете почти нет существ, безразличных к свету. Даже одноклеточные животные, у которых нет глаз, и те прекрасно отличают свет от темноты. В основе светоощущения лежит свойство некоторых химических реакций ускоряться под действием света, и поэтому протоплазма, видимо, почти любых клеток многоклеточных животных может воспринять свет, так что участие глаз совершенно не обязательно.

Начало органу зрения дало появление специальных светочувствительных клеток, способных реагировать на более слабый свет, чем остальные клетки организма. Владельцы специальных светочувствительных клеток сохранились на Земле до наших дней. Среди них хорошо известный дождевой червь. У него нет глаз, зато в коже масса светочувствительных клеток. С их помощью он легко улавливает незначительное изменение освещенности. Человеку это недоступно. Из таких вот разбросанных по всему телу светочувствительных клеточек и возникали в процессе эволюции глаза. Сначала это были просто пятнышки, скопления светочувствительных клеточек. Такие глаза хорошо различают свет от темноты, но еще не могут улавливать, откуда он идет.

Дальнейшая история глаз такова: светочувствительные клетки уходят под прозрачные покровы, обзаводятся экранами из пигментных клеток, которые делают невозможным освещение со всех сторон. Затем светочувствительные пятнышки превращаются в ямки или даже в пузырьки – первые настоящие глаза. Они могут улавливать только свет, идущий в определенном направлении, поэтому очень легко определяют направление падающих лучей. От этих примитивных зрительных приспособлений до глаз высших животных один шаг. Оставалось обзавестись светопреломляющими системами, аккомодационными устройствами, изменяющими степень преломления световых лучей, и, наконец, глазодвигательным аппаратом, который позволил глазам вести активный поиск зрительной информации.

Среди беспозвоночных у головоногих моллюсков наиболее совершенные глаза. Они ничем не уступают зрительному аппарату высших позвоночных. Другая ветвь беспозвоночных, членистоногие, которая достигла высокого уровня развития, почему-то не преуспела в совершенствовании своих глаз, но компенсировала это тем, что обзавелась большим количеством глазков (пирамидок с основанием, обращенным наружу и прикрытым хитиновым хрусталиком), объединив их в несколько сложно устроенных глаз, состоящих из сотен и даже тысяч пирамидок. Благодаря совместным усилиям отдельных обычно довольно близоруких глазков насекомые и ракообразные могут улавливать величину и форму предметов.

История глаз позвоночных началась иначе. В прибрежной зоне многих морей и океанов живут небольшие интересные животные – ланцетники, формой тела слегка напоминающие маленьких рыбок или лезвие скальпеля, точнее, ланцета, как раньше назывался этот хирургический инструмент (отсюда и ланцетник). У них видит сам мозг. Вдоль всей нервной трубки ланцетника разбросаны светочувствительные клеточки, а так как тело у него прозрачное, то животное прекрасно отличает свет от темноты. Большего ему для жизни и не нужно.

Видимо, предки позвоночных были похожи на ланцетников, и у них тоже видел мозг. Когда же их тело перестало быть прозрачным, комочкам нервных светочувствительных клеток пришлось покинуть мозг и вылезти наружу. С тех пор так поступают глаза всех позвоночных животных: на определенной стадии развития эмбриона два кусочка его мозга отделяются от остальной части и постепенно превращаются в глаза. Таким образом, наши глаза не что иное, как вылезший из орбит наружу мозг.

Дальнейшее развитие глаз позвоночных шло по уже проторенной дорожке: приобретение преломляющих систем, аккомодационных аппаратов, глазодвигательных мышц. Так, постепенно усложняясь, формировались наши глаза, способные разобраться в запутанном кружеве неразборчивого человеческого почерка и уловить тончайшие оттенки цвета. Одновременно с совершенствованием глаз усложнялся и мозг животных. Ведь глаз – это просто световоспринимающее устройство, вроде фотоаппарата, «видит» же только наш мозг. Это он складывает информацию, полученную от миллионов светочувствительных клеточек нашего глаза в замысловатые картины. Именно здесь, в мозгу, проявляются снимки, сделанные глазом.

Звуковой анализатор, или, попросту говоря, слух, в ходе эволюции животных возник относительно поздно. Поэтому было бы бесполезно искать его у низших беспозвоночных. У позвоночных орган слуха появляется, начиная с рыб. У них от лабиринта, органа равновесия, отделяется небольшая часть, которая позже у высших животных станет улиткой с хорошо развитым кортиевым органом, самой важной частью слухового прибора.

Кортиев орган, по существу, является рецептором, способным следить за быстрыми, очень незначительными изменениями давления окружающей среды. Быстрые сжатия среды и последующие мгновенные падения давления, возникающие в рупоре нашего наружного уха, воздействуют на барабанную перепонку. Ее колебания через цепь слуховых косточек передаются на овальное окно и лабиринтную жидкость, доходя таким образом до кортиева органа, волокна которого испытывают острый резонанс, раздражая при этом соответствующие рецепторы слухового нерва.

Чувствительность слухового аппарата поистине удивительна. Человеческое ухо уже может воспринимать звук, создающий давление, равное 0,0001 бара на квадратный сантиметр, которое способно переместить мембрану улитки всего лишь на стомиллиардную часть сантиметра! Это расстояние в тысячу раз меньше диаметра самого крохотного атома – атома водорода!

Кстати, человек не является чемпионом в области слуха. Многие животные способны слышать гораздо более слабые звуки. Не следует считать это нашим недостатком. Человек – очень шумное существо, и ему, пожалуй, выгоднее слышать меньше, чем больше. Гораздо важнее, что он способен без особого вреда переносить довольно сильные звуки, возникающие при звуковом давлении до 2000 бар. У некоторых пород белых крыс и ряда других животных сильные звуки вызывают судорожные припадки и смерть.

Что было бы с человечеством, если бы наше ухо не смогло приспособиться к сильным звукам! Только в одном мы бы выиграли: для нас оказались бы невозможны кровопролитные войны, ведь солдаты с таким чувствительным слухом умирали бы не от пуль противника, а от звуков выстрела собственных винтовок, и до создания артиллерии дело бы просто не дошло.

Все же, хотя сильные звуки для нас не смертельны, длительное шумовое воздействие может привести к серьезным заболеваниям органов слуха и центральной нервной системы. Поэтому нужно всячески приветствовать борьбу за тишину в рабочих и жилых помещениях. В городах и поселках главными союзниками в этой борьбе могут стать зеленые насаждения. Раскидистые лапы кленов, курчавые кроны липок, густая зелень тополей удивительно легко гасят звуковые колебания.

Слух человека не только по остроте, но и по другим показателям отстает от слуха животных. Во-первых, мы слышим лишь очень узкую полосу звуковых колебаний. Звук не воспринимается как непрерывный, когда частота колебаний давления составляет 16–18 в секунду, и исчезает, когда колебания достигают частоты 20 тысяч в секунду. Ухо, неспособное уследить за такой быстрой сменой давлений, перестает информировать о его колебаниях, и нам кажется, что вокруг воцарилась полная тишина.

20 тысяч колебаний в секунду очень немного. Наши верные друзья – собаки способны улавливать 38 тысяч колебаний давления в секунду. Это тоже ничтожная цифра. Киты и дельфины могут следить за изменениями давления, совершающимися с частотой 100–125, а летучие мыши даже до 300 тысяч в секунду. Животные, ухо которых способно воспринимать такие ультравысокие звуки, могут и сами их воспроизводить, но мы, к сожалению, лишены удовольствия это слышать. Только поэтому появилась нелепая, с точки зрения современной науки, поговорка: нем как рыба. Если бы рыбы были способны так же придирчиво разбирать наши достоинства, у них неизбежно возникла бы поговорка: глух как человек. Впрочем, природа поступила очень разумно, лишив нас способности слышать очень высокие звуки. Кроме возможности слышать писк вылетевших на охоту летучих мышей или участвовать в задушевных рыбьих разговорах, мы ничего не потеряли. В нашей собственной речи мы легко обходимся звуковыми колебаниями, лежащими в диапазоне между 500 и 2000 колебаний в секунду.

Человек и высшие животные обладают бинауральным слухом, то есть, попросту говоря, пользуются двумя ушами. Это очень помогает в определении источника звука. Звуковые волны в воздушной среде, как известно, распространяются со скоростью 340 метров в секунду, поэтому звук в большинстве случаев не одновременно достигает правого и левого уха. Только когда мы повернемся лицом к звуку, он будет приходить к обоим ушам в одно и то же время. Человек способен замечать, что звук до одного из наших ушей дошел с опозданием всего лишь на 0,0001 секунды.

Вдумайтесь, какую ничтожную разницу во времени прихода звука может уловить мозг. У лисицы, которая гораздо точнее человека способна локализовать местоположение источника звука, расстояние между ушами около 10 сантиметров, то есть приход звука в одно ухо по отношению к другому может опаздывать самое большее на 0,0003 секунды. Обычно этот интервал значительно короче. Чтобы определить источник звука, лисица поворачивает голову до тех пор, пока звук не станет приходить в оба уха совершенно одновременно.

Животные вообще могут очень точно измерять и запоминать величину интервалов между приходом отдельных звуков. Собака легко отличает звучание метронома, производящего 100 ударов в минуту, от того же метронома, дающего только 98 ударов. Даже для изощренных ушей музыкантов-профессионалов звучание обоих метрономов совершенно одинаково.

По многим показателям слух человека значительно отстает от животных. В одном мы стоим на недосягаемой высоте. Никто из животных не способен анализировать поток быстро следующих друг за другом звуков. Необходимость такого анализа понятна: без него была бы невозможна наша речь.

 

Третий глаз

 

К перрону вокзала медленно подходил детский туристский поезд. Огромный красный электровоз, поскрипывая тормозами, замедлил ход. Следом за ним, медленно извиваясь, пересекая стрелки и переходя с одного пути на другой, тянулась дюжина больших красивых темно-зеленых вагонов с широкими, чисто вымытыми окнами, а за ними белые сплюснутые носы и глаза, глаза, все парами, в три, четыре этажа, черные, серые, голубые, зеленые. Словно фантастический чудовищный зверь, приближающийся состав смотрел на город тысячью внимательных глаз.

– Тысячеглазка, – сказал кто-то в толпе встречающих. И это была правда. Поезд очень напоминал червячков турбеллярий, передняя часть тела которых окаймлена вереницей крохотных, почти микроскопических глаз. И полз он тоже как червяк, медленно и плавно извиваясь.

Глаза – очень важные органы чувств. Не удивительно, что у многих животных их десятки, а то и сотни. Чем примитивнее глаза, тем больше их должно иметь животное. Иначе не проживешь. Но чем совершеннее становились зрительные рецепторы, тем меньше их требовалось. Существуют одноглазые животные. Это веслоногие рачки, названные в честь мифических одноглазых великанов Древней Греции циклопами. Они вполне обходятся одним-единственным лобным глазом.

Ну, а сколько же глаз наиболее целесообразно иметь? Вопрос совсем не такой простой, каким кажется на первый взгляд, и ответить на него нелегко. Количество необходимых животному глаз зависит от их совершенства и его образа жизни. На Земле есть существа, которые некогда имели очень хорошие глаза, а затем переселились в места, совершенно лишенные света, как это было с мексиканской пещерной рыбкой, и глаза у них исчезли.

Видимо, здесь можно смело положиться на природу. В процессе эволюции каждый вид животных приобрел их столько, сколько ему было необходимо для благополучного существования. Для позвоночных животных, к которым относится и человек, имеющих очень сложно устроенный, высокоразвитый мозг и очень совершенные глаза, вполне достаточно… трех. Да, да, трех! Не удивляйтесь!

У рыб, земноводных, пресмыкающихся, птиц и даже у млекопитающих, в том числе и у каждого из нас, по три глаза. Только о существовании третьего глаза мы обычно забываем, а то и просто не знаем. Да и не мудрено: лишний глаз расположен у человека в глубине мозга и со всех сторон окружен различными его отделами, так что снаружи, конечно, совершенно невиден. Даже называется не глазом, а шишковидной железой. В процессе эволюции позвоночных животных он из настоящего глаза превратился в полноценную железу.

Таинственный глаз невелик. У человека он весит всего 0,1–0,2 грамма. Значительно меньше, чем у современных крокодилов или вымерших чудовищных звероящеров. У низших позвоночных животных этот орган по своему устройству ничем существенным не отличается от обычных глаз. Снаружи у него есть хрусталик. Внутри находится стекловидное тело, подобие сетчатки со светочувствительными клетками и остаток сосудистой оболочки. От глаза, как и полагается, отходит нерв.

Вот удивились ученые, когда около ста лет назад его впервые обнаружили. Сколько это вызвало различных предположений! Было совершенно непонятно, что высматривает таинственный глаз в мозгу. Следит за его работой? Может быть, с помощью этого глаза человек видит, осознает свои мысли и чувства? Высказывались и другие, не менее фантастические предположения.

Вопрос о функции третьего глаза, казалось, начал проясняться, когда узнали, что он есть у всех позвоночных животных. У большинства из них, например у лягушек, он находится в коже на вершине черепа, а у ящериц сразу под кожей, и хотя закрыт чешуей, но у игуан, крупных южноамериканских ящериц, эти чешуйки прозрачные, а у гаттерий, живущих в Новой Зеландии, вообще покрыт только тонкой прозрачной пленкой. Значит, он может видеть!

Ученые пытались изучить функцию этого добавочного теменного глаза. Опыты подтвердили, что он действительно реагирует на свет, даже может различать цвета. А это очень много, ведь и обычные парные глаза у многих животных цвета не различают.

Гаттерии очень древние существа, прямо живые ископаемые. Они жили в ту отдаленную эпоху, когда Землю населяли исполинские ящеры, и с тех пор ни чуточки не изменились. Вероятно, подумали ученые, в те далекие времена все живые существа широко пользовались для зрения и третьим глазом. Предположение подтвердилось.

Палеонтологи (ученые, изучающие вымерших животных) давно обращали внимание на непонятное отверстие в верхней части черепа вымерших гигантских ящеров. Оно оказалось третьей глазницей и по размеру только слегка уступало боковым. Теперь уже не было сомнения: в древности животные активно пользовались всеми тремя глазами. Ведь очень удобно, прежде чем вынырнуть из воды, приблизить к ее поверхности голову и поглядеть третьим глазом, что творится на белом свете. Такая осторожность не лишняя ни для грозных хищников (как бы не удрала добыча), ни тем более для их жертв.

Так было выяснено, как возник и для чего в прошлом использовался третий глаз. Оставалось непонятным, зачем третий глаз современным животным. Скрытый чешуей, он у большинства пресмыкающихся видеть, конечно, ничего не может. Если бы он был совершенно не нужен, то вряд ли бы сохранился, как не сохранились задние конечности китов. Ученые хорошо знают, что органы, потерявшие для животных значение, исчезают очень скоро. А раз третий глаз остался, значит он для чего-то нужен и современным животным. Но для чего? Исследование пришлось продолжить.

Вскоре выяснилось, что у холоднокровных животных он выполняет функцию термометра. Эти животные не умеют поддерживать на одном уровне температуру собственного тела. Они могут только немного ее регулировать, скрываясь днем от палящего солнца, а в холодные ночи от мороза. Но прятаться, когда тело уже успело сильно нагреться или слишком охладиться, поздно: так недолго получить тепловой удар или замерзнуть. Вот третий глаз и служит для измерения наружной температуры, заранее предупреждая животных, что становится слишком жарко или слишком холодно и настала пора прятаться. Ведь для тепловых лучей кожные покровы животных не препятствие.

Этим, однако, функция третьего глаза не ограничивается. У амфибий он может регулировать цвет кожи. Если головастиков минут на 30 поместить в темную комнату, кожа у них заметно посветлеет. Но когда головастикам удаляют третий глаз, они теряют способность изменять цвет своей кожи. Оказалось, что третий глаз может вырабатывать особый гормон мелатонин, который и вызывает посветление кожи. На свету выработка этого гормона тормозится.

Третий глаз млекопитающих, хотя и скрыт глубоко внутри черепа, однако прекрасно осведомлен о том, что происходит снаружи. Во всяком случае, он отлично знает, светло на белом свете или землю окутал мрак. Сведения эти он получает, видимо, из первых рук. В третий глаз млекопитающих проникают только веточки симпатического нерва (других нервов в нем нет), идущие от верхнего шейного симпатического ганглия, который в том числе иннервирует и мышцы, расширяющие зрачок. Как известно, зрачки расширяются в темноте. Очень может быть, что смена дня и ночи и другие изменения освещенности вмешиваются в деятельность шишковидной железы. У крыс, длительно содержавшихся при постоянном освещении, вес шишковидной железы сильно снижался. Длительное пребывание в темноте, напротив, никак не сказывалось на теменном глазе.

Участием в изменении цвета и в терморегуляции функции третьего глаза не исчерпываются. Внимательное изучение показало, что у человека третий глаз превратился в полноценную железу, но железу необычную. Ни в какой другой железе, кроме шишковидной, нельзя увидеть астроциты, самые обычные нервные клетки, широко распространенные в полушариях головного мозга. В чем смысл такого тесного переплетения железистых и нервных клеток, пока не ясно.

Сейчас исследования ведутся во многих лабораториях мира. Головастики натолкнули ученых на мысль, что третий глаз у высших животных вырабатывает какие-то гормоны. Предположение подтвердилось. Оказалось, что вырабатываемые им гормоны действуют преимущественно на другое мозговое образование – гипоталамо-гипофизарный комплекс, который принимает самое активное участие в регуляции водно-солевого равновесия, состава крови, пищеварения, полового созревания и половой деятельности, а главное – организует наши эмоциональные состояния и, следовательно, в конечном итоге определяет характер нашей психической деятельности. Опыты, проведенные на животных, показали, что молодые крысята, у которых удален третий глаз, быстрее растут и становятся крупнее, чем их нормальные сородичи. Они скорее достигают половой зрелости и чаще приносят потомство. Аналогично себя ведут оперированные цыплята. Они скорее становятся петушками и курочками, а потом интенсивнее несутся.

Дети, у которых вследствие какой-либо болезни ослабляется или вовсе прекращается деятельность шишковидной железы, рано достигают половой зрелости, а их половые органы непропорционально быстро растут и становятся чрезмерно большими. Наоборот, систематическое введение в организм препаратов, приготовленных из шишковидной железы, замедляет половое созревание, а у взрослых животных вызывает атрофию половых желез. Такие животные реже приносят потомство, менее активно стремятся обзавестись семьей.

Дальнейшие исследования обнаружили еще много интересного. Оказалось, что шишковидная железа, действуя на гипофиз или непосредственно на поджелудочную железу, участвует в регуляции уровня сахара в крови. Введение в организм вытяжек из шишковидной железы приводит к резкому изменению водного обмена. Некоторые ученые замечали влияние третьего глаза на работу надпочечников и щитовидной железы.

Из исследований, проведенных на людях и животных, видно, что шишковидная железа работает от рождения до глубокой старости и ничуть не снижает своей активности, хотя не исключено, что с возрастом все же изменяет характер своей деятельности. Об этом свидетельствует появление в тканях третьего глаза песчинок, состоящих из кальция, магния, фосфора и железа. У новорожденных странного мозгового «песка» нет, до 15 лет он вообще встречается редко, зато потом количество его с каждым годом увеличивается. Мы хорошо знаем, что крохотная песчинка может полностью нарушить работу нашего наружного глаза. Трудно представить, что щепотка песка в теле третьего глаза не мешает его деятельности.

С момента первых исследований мы много неожиданного узнали о нашем третьем глазе. Исчерпываются ли этим его функции? Думаю, что нет. Опыты продолжаются. Вероятно, еще немало сюрпризов подарит нам этот таинственный и все еще плохо изученный орган.

 

Удивительный мир света

 

Физика одна из древнейших наук. Уже на заре человечества люди научились изготовлять первые оптические приборы – плоские зеркала. Гораздо позже появились зеркала сферические, позволяющие собирать световые лучи в один пучок или равномерно рассеивать их. Сначала зеркала делали из металла. Изобретение стекла открыло перед оптикой огромные возможности, но прошло очень много времени, прежде чем научились шлифовать стеклянные линзы.

Увеличительные стекла захватили воображение образованных людей того времени. Через них рассматривали мелкие предметы, а наиболее изобретательные, прикрепив для удобства к шлему или иному головному убору, использовали как своеобразные очки. Пока это были простые игрушки. Потребовалось еще немало усилий, чтобы они превратились в современные бинокли, телескопы, микроскопы и фотоаппараты. Создавая их, люди и не подозревали, что могут многое позаимствовать у природы. Ведь наш глаз устроен ничуть не хуже любого современного фотоаппарата или съемочной телевизионной камеры. Он имеет специальные устройства, преломляющие световые лучи и фокусирующие их на внутренней поверхности задней стенки глаза, диафрагму, регулирующую количество проникающего внутрь света, и светочувствительные элементы, возбуждение которых по волокнам зрительного нерва транслируется в затылочные области мозга, где, как на экране телевизора, проходит своеобразная развертка, возникают зрительные ощущения, зрительные образы.

Чтобы отчетливо видеть окружающие предметы, необходимо очень точно сфокусировать их изображение на воспринимающих элементах. В современных фотоаппаратах это достигается перемещением объектива. Точно такую же конструкцию использовала природа, создавая глаза первых позвоночных животных. Хрусталик, одна из главных преломляющих сред глаза, у рыб и амфибий снабжен специальной мышцей, с помощью которой он может передвигаться вдоль оптической оси глаза.

У рептилий, птиц и млекопитающих появляется новое, современной техникой еще не освоенное приспособление, позволяющее им осуществлять фокусировку, изменяя кривизну хрусталика, а следовательно, его преломляющую силу. Для этого служит кольцеобразная мышца, окружающая хрусталик.

Чтобы изменить форму хрусталика, у птиц и рептилий мышца сжимается и, сдавливая хрусталик, делает его более шарообразным. Кольцевая мышца млекопитающих, наоборот, растягивает хрусталик, делая его более плоским, когда же мышца расслабляется, хрусталик вновь увеличивает свою кривизну. Интересно, что при этом главным образом изменяется кривизна его передней поверхности, радиус которой колеблется между 6 и 10 миллиметрами, радиус задней поверхности изменяется не более чем на полмиллиметра.

Конструируя преломляющие устройства для глаз млекопитающих, природа допустила серьезный просчет. Она, видимо, не предполагала, что высший представитель этого класса животных – человек придумает крохотные крючочки и закорючки, назовет их буквами и будет с их помощью обмениваться информацией. Для этого людям пришлось стать достаточно близорукими, чтобы иметь возможность разбираться в своих же каракулях. Вот здесь по милости природы и начались наши неприятности. С возрастом хрусталик делается менее эластичным, растягивается он еще хорошо, но зато теряет способность принимать затем прежнюю форму: к старости человек становится дальнозорким, приходится прибегать к очкам.

Преломляющая сила глаза складывается в основном из преломляющей силы роговицы и хрусталика. Показатели преломления роговицы и находящейся за ней жидкости почти такие же, как у обыкновенной воды. Поэтому под водой наше зрение сильно нарушается. Световые лучи, попадающие в глаз, проходят сквозь роговицу ничуть не преломившись, а один хрусталик не в состоянии сфокусировать световой поток на светочувствительных элементах. В воде человек становится настолько дальнозорким, что практически любой предмет, как бы далеко он ни находился, оказывается для нас слишком близко, и мы способны видеть только достаточно крупные предметы, да и то очень расплывчатыми. Это ничуть не мешает водолазам и аквалангистам прекрасно ориентироваться в прозрачной воде. Но у них глаза непосредственно не соприкасаются с водой. От нее их отделяет стекло и тонкий слой воздуха, поэтому в фокусировке принимает участие и хрусталик и роговица. Изображение получается вполне отчетливым, только все предметы кажутся на треть крупнее, чем в действительности. Это обстоятельство нужно всегда иметь в виду, слушая охотничьи рассказы аквалангистов.

Преломляющая сила глаза зависит не только от кривизны роговицы и хрусталика, но и от качества материала, из которого они состоят. Роговица рыб, как и человека, неспособна в воде преломлять световые лучи. Рыбы и не пытаются ее для этого использовать, она у них плоская, зато хрусталик шаровидный. У китов роговица выпуклая, а показатель ее преломления велик, в фокусировке участвуют и роговица и хрусталик.

Каждый вид животных приобрел глаза, наиболее удобные для зрения в той среде, где он обитает. Труднее всего было тем, кому приходилось бывать и под водой и на суше. Им пришлось или выбирать себе зрение лишь для одной среды, или значительно реконструировать глаза. Небольшая рыба илистый прыгун выбрал для себя глаза типичного обитателя суши. Он постоянно вылезает на прибрежные деревья и проводит много часов вдали от воды. А если в воде его глаза ничего не видят, не беда: ведь в грязных лужах, где приходится обитать прыгунам, вода такая мутная, что глаза, пожалуй, совсем не нужны.

Жучки-ветрячки живут в чистой воде. Они не смогли сделать выбора, и природа снабдила их двумя парами глаз: одной для воды, второй для воздушной среды. Точно так же пришлось поступить природе с рыбкой четырехглазкой, обитающей в водоемах Центральной и Южной Америки. Питается четырехглазка насекомыми, ловко подпрыгивая и хватая их на лету.

Фактически у четырехглазки два вполне обычных глаза, только зрачки их сильно вытянуты в вертикальном направлении и разделены на две части специальной перегородкой. Преломляющие субстанции верхней части прозрачных сред глаза приспособлены для зрения в воздушной среде, нижние – в водной.

Особенно трудной задачей оказалось конструирование глаз для животных, способных очень быстро перемещаться. Бакланы, которым, как и всем птицам, для полета необходимо самое дальнее зрение, а в воде при ловле рыбы – самое ближнее, могут очень сильно менять кривизну хрусталика. Если у человека даже в юности преломляющая сила глаза достигает всего лишь 15 диоптрий, то у бакланов она составляет 40–50. Поэтому они одинаково хорошо видят и небольшую рыбешку, стремительно удирающую к зарослям подводной травы, и орла, висящего высоко в небе у них над головой.

Очень хорошо видят и в воде и на суше большинство тюленей и многие морские змеи. А вот пингвины, покидая воду, становятся очень близорукими.

Очень сильно отличаются глаза современных животных по своей чувствительности к свету. Причина этих различий понятна: освещенность на земном шаре изменяется в широких пределах: то светит яркое солнце, то день становится пасмурным, то наступила глухая ночь. Многие животные постоянно живут в темноте, под землей, в пещерах, в глубине океанов.

Многие днем спят и только ночью выходят из своих убежищ. У таких животных обычно или очень большие и очень чувствительные глаза, или эти органы оказываются редуцированными, и их хозяевам приходится обходиться без зрения.

Иногда глаза достигают прямо-таки гигантских размеров: у глубоководных моллюсков до 20 сантиметров в диаметре, а у маленькой амфиподы равны трети длины тела. У глубоководных рыб и моллюсков глаза имеют телескопическую удлиненную форму и очень большой зрачок. Все эти приспособления направлены на то, чтобы собрать внутри глаза как можно больше световых лучей и сфокусировать их затем на световоспринимающих элементах, которые обладают очень большой чувствительностью. Сове, чтобы отчетливо видеть, нужно в 100 раз меньше света, чем человеку.

Еще одной очень интересной особенностью обладают глаза глубоководных рыб и наземных хищников. У них внутренняя поверхность глаза имеет блестящий слой, так называемое зеркальце, которое очень хорошо отражает падающий на него свет. Благодаря этому зеркальцу светятся по ночам кошачьи глаза. Ни у волка, ни у кошки, ни у крокодила света глаза не вырабатывают, а отбрасывают попавшие внутрь и сконцентрированные на их задней поверхности слабые световые лучи звезд, луны, далеких огней. Поэтому в полной темноте глаза светиться, конечно, не могут.

Поистине жуткое впечатление производят на запоздалого путника, оказавшегося ночью в лесу, яркие, как угольки, внимательно следящие за ним из тьмы глаза. Однако не следует думать, что назначение зеркальца – пугать по ночам людей. Задача его иная: вновь отразить световые лучи на световоспринимающие элементы и тем самым усилить их действие. Глаза, снабженные зеркальцем, способны максимально полно использовать все крохи света, пришедшие сюда. Люди, к сожалению, лишены этого ценного приспособления, и поэтому глаза не выдают нас, когда нам случится ночью притаиться в засаде.

Воспринимающими элементами глаза являются колбочки и палочки. Колбочек в человеческом глазе около 7 миллионов, а палочек и того больше – около 130. Распределены светочувствительные элементы неравномерно: колбочки расположены гуще в центральной части зрительного поля. Особенно высока их концентрация в желтом пятне, которым мы обычно пользуемся для очень детального изучения окружающих предметов.

Другое назначение колбочек – цветоощущение. Далеко не все животные различают цвета. Цветоощущение впервые возникло у высших беспозвоночных. Головоногие моллюски, ракообразные и многие насекомые прекрасно разбираются в цветах. Насекомые до некоторой степени даже превзошли всех остальных животных: они способны видеть ультрафиолетовые лучи, совершенно недоступные человеку. Благодаря этому они видят удивительный мир, с которым мы познакомились лишь недавно, научившись делать снимки на фотопленке, чувствительной к ультрафиолетовым лучам.

У позвоночных хорошо различают цвета большинство дневных животных. Мир красок доступен многим рыбам, амфибиям, рептилиям и птицам. Лишь млекопитающих природа обделила этим даром. Может быть, это произошло потому, что их предки были ночными животными. Даже наши верные помощники – собаки, так много перенявшие у человека, различать цвета не научились. Кстати, не воспринимают цвета и копытные животные. Вопреки прочно укоренившемуся мнению, что быки очень не любят красного цвета, приходится констатировать, что они его совершенно не могут отличить от зеленого, синего или даже черного одинаковой с ним насыщенности. Из всех млекопитающих, по-видимому, только обезьяны да мы, люди, способны любоваться игрой красок.

Способность желтого пятна давать мозгу очень детальную информацию о рассматриваемом предмете, по-видимому, связана с очень высокой концентрацией здесь воспринимающих элементов, а также еще и потому, что каждая колбочка связана со своим собственным индивидуальным нейроном. Палочки такого индивидуального нейрона не имеют и вынуждены группироваться целыми компаниями вокруг одной-единственной нервной клетки.

С помощью желтого пятна мы увидим две разные точки, если их изображения попадут на две колбочки. Различать те же самые точки с помощью периферической части зрительного поля мы можем, когда их изображение проецируется на две разные компании палочек. Если две точки сфокусированы в пределах одной компании палочек, глаз увидит всего одну точку. Не удивительно, что у орлов и грифов, которым из поднебесья приходится высматривать на земле добычу, бывает не одно, а два или даже три желтых пятна.

Колбочки, кроме желтого пятна, есть и в остальных участках центральной части зрительного поля, только концентрация их здесь значительно ниже. А на периферии колбочек нет вовсе. Там находятся только палочки – световоспринимающие элементы более высокой чувствительности. Так как несколько палочек посылают свою информацию в одну и ту же нервную клетку, в сумерки очень слабо возбужденные палочки общими усилиями могут возбудить свой нейрон, и глаз все-таки что-то увидит, тогда как колбочки, адресующиеся лишь к своей собственной нервной клетке, в этом случае бессильны.

К помощи палочек мы прибегаем в сумерках, когда колбочки становятся просто помехой. Мы могли бы видеть ночью гораздо лучше, если бы не привычка фокусировать изображение на желтом пятне. Поэтому ночью мы гораздо лучше видим предметы, изображение которых оказывается на боковых участках сетчатки, а это происходит, когда мы не смотрим на предмет, который хотим увидеть.

Таким образом, для ночного зрения полностью или частично бесполезен значительный участок сетчатки, именно тот, которым так привычно и удобно пользоваться днем. Впрочем, и днем мы можем пользоваться не всей сетчаткой. Недалеко от желтого пятна расположено второе пятно – слепое. Здесь сквозь оболочки глаза выходят наружу волокна зрительного нерва. На этом участке совсем нет светочувствительных элементов, и он никакого участия ни в ночном, ни в дневном зрении не принимает.

Удивительно, что мы не замечаем дырки в собственном поле зрения. Отчасти потому, что смотрим на мир двумя глазами и на слепые пятна каждого из глаз ложатся различные участки изображения. При рассматривании какого-либо предмета наш глаз не остается неподвижным, а скользит по контурам и наиболее существенным местам изображения, а кроме того, совершает еще мелкие дрожательные движения. Изображение предмета очень быстро перемещается по сетчатке, а это дает нам возможность видеть все его части.

Различная концентрация световоспринимающих элементов приводит к тому, что мы видим достаточно отчетливо только специально рассматриваемый предмет. Для нас это очень хорошо, помогает сконцентрировать внимание на главном. Хищникам же, которые подстерегают свою добычу, необходимо очень широкое поле зрения. Они должны одинаково хорошо видеть достаточно обширный участок, и им такое зрение не очень подходит. Однако и здесь природа нашла выход.

Кому случалось погружаться в водолазном костюме в прозрачные морские воды вдалеке от суши, вероятно, чувствовал себя там довольно одиноко. Куда ни кинь взор, слева и справа, впереди, вверху и внизу – всюду голубовато-серая, уходящая вдаль дымка. И пустота: полная, бесконечная. Глазу просто не на чем остановиться. Даже космическое пространство не кажется таким пустым. Там ярко сияет солнце, весело поблескивают огоньки мириад звезд.

Рыбы, живущие в открытом океане, видимо, тоже чувствуют себя очень одиноко. Недаром большинство их ищет компании себе подобных, объединяясь в стаи.

Любой предмет в этой беспредельной пустоте приковывает внимание. От него невозможно оторвать взор, невозможно пройти мимо. На этом основан один из способов ловли на нехитрую снасть, называемую у рыболовов самодуром.

Устройство самодура несложно: длинная леска с грузилом на конце, к которой на отдельных поводках прикрепляют пяток рыболовных крючков. Наживки при ловле на самодур не требуется. Снасть опускают на глубину 30–50 метров и время от времени подергивают, а когда по дрожанию лески станет ясно, что рыба попалась, снасть осторожно вытаскивают в лодку.

На новичков обычно сильное впечатление производит то, что рыба глотает пустые крючки, и еще, пожалуй, большее, что она зацепляется за них брюхом, хвостом или спиной. А удивляться тут нечему. Рыбы, настрадавшиеся от пустоты, не могут оторвать взгляда от незнакомого предмета, пробуют его на вкус, вьются вокруг плотным клубком и нанизываются на крючки, когда рыболов подергивает за леску. Да если бы самого новичка опустить в морские глубины, он от голубой тоски не только крючки начал бы глотать, а и на сковородку сам бы выпрыгнул, если бы таковая поблизости оказалась.

Безусловно, для рыб, постоянно путешествующих в просторах голубовато-серого тумана, ни один встречный предмет не остается незамеченным. Ведь здесь ничто не приковывает взора, ничто не отвлекает, не мешает смотреть. Вот природа и решила создать некоторым хищным животным, живущим на расцвеченной веселыми красками земле, перед глазами пустыню, чтобы они легче замечали свою добычу.

Световоспринимающие приборы глаза устроены так, что они способны передавать в мозг информацию не об интенсивности падающего на них света, а лишь о характере изменения освещенности. Как только произойдет хоть малейшее изменение освещенности палочек и колбочек, они немедленно телеграфируют об этом мозгу и ждут следующих изменений, чтобы дать новую телеграмму. И так всю жизнь.

Об этих интересных особенностях световоспринимающих элементов впервые узнали благодаря изучению электрических реакций, возникающих при освещении глаза. Теоретическое осмысливание их приводило к гипотезе, что при пристальном рассматривании неподвижным глазом неподвижного предмета он может быть виден в течение лишь очень короткого времени. Проверить это предположение было не так-то просто, ведь человеческий глаз, кроме значительных поисковых движений, постоянно дрожит, совершая небольшие колебания. Все же ученым удалось найти остроумный способ для экспериментального изучения этого вопроса. Так как остановить движение глаза оказалось очень трудным, изображение прикрепили непосредственно к глазному яблоку. Благодаря этому, как бы глаз ни двигался, изображение фокусируется все на те же элементы сетчатки. Исследование подтвердило, что неподвижного изображения глаз не видит!

У позвоночных животных способность двигать глазами появилась на довольно поздних стадиях эволюции. Глаза большинства рыб неподвижны, но, видимо, им это не мешает. Вода не дает телу прочной опоры, и оно никогда не бывает абсолютно неподвижным, а вместе с ним движутся и глаза.

Когда древние рыбы превратились в земноводных и, выбравшись на сушу, получили для своего тела прочный фундамент, они взамен утратили способность непрерывно видеть окружающий их мир. Потеря эта оказала на амфибий, видимо, очень существенное влияние: утратив постоянный приток зрительной информации, они значительно поглупели по сравнению со своими предшественниками – рыбами. Когда нет информации, мозгу нечего делать и он не развивается.

Удивительный мир видят амфибии. Взгляните летним полднем на лягушку или жабу, нежащуюся где-нибудь на мелководье под лучами ласкового солнца. С каким философским спокойствием рассматривают они мир! Да и о чем волноваться! Когда жаркое марево повисло над болотом, а в воздухе не чувствуется ни ветерка и ни одна травинка, ни один листок не дрогнет, перед глазами у жабы вместо буйства красок висит, как занавеска, голубовато-серая дымка, точно попала она в просторы океана или сидит перед экраном включенного телевизора, у которого испорчено приемное устройство.

Как ни скучен, ни однообразен мир, который видят амфибии, такие глаза создают известные удобства. Ни одно живое существо не ускользнет от их взора. Вот мимо пролетела муха, и на пустом экране телевизора тотчас появилось ее изображение. Вот она села на стебелек осоки, травинка качнулась и тоже появилась на экране, но ненадолго, и вновь перед лягушкой на фоне серовато-голубой дымки лишь ползущая муха, одна-единственная на всем белом свете. Ну как же ее не заметить? Никакая добыча не ускользнет от таких внимательных глаз.

Временная слепота не мешает амфибиям жить и нормально ориентироваться. Они не натыкаются на предметы, ведь стоит только шевельнуться, и на экране молчавшего до того телевизора появляется окружающий мир.

Можно считать, что амфибиям не очень повезло с анализаторами. Условия приема звуковой и обонятельной информации в воздушной среде значительно отличаются от того, что происходило в воде. Эти органы чувств у амфибий оказались не очень хорошо приспособленными к новым условиям. Поэтому пищу амфибии находят только с помощью зрения, да и ту могут замечать, лишь когда она движется.

Кому приходилось держать жаб и лягушек у себя дома, знают, что неподвижную пищу они не берут. Это очень прискорбная особенность лягушек. Как известно, эти безобидные терпеливые существа стали излюбленным объектом ученых для проведения всевозможных медицинских и биологических исследований; к тому же лягушки очень дешевы, а содержать их можно в течение всей зимы где-нибудь в прохладном помещении, и корма они в это время не требуют, ведь и в природе они зимой впадают в спячку и в этот период совсем не едят.

Лягушки – очень удобный объект для исследования, но есть у них один-единственный недостаток, пришло лето – кончай работу. Лягушки выходят из спячки и начинают усиленно питаться. В этот период им нужно много корма и обязательно живого. В лабораториях, где содержится по нескольку сотен или тысяч лягушек, организовать питание очень сложно, да и живой корм стоит намного дороже самих лягушек. Пытаться приучить есть из кормушки кусочки сырого мяса – бесполезно. Ведь они его не видят. Долго не удавалось преодолеть это препятствие, пока не догадались сделать вращающуюся кормушку, вроде карусели, по краям которой раскладывают кусочки мяса. К такой кормушке лягушки скоро привыкают и начинают как ни в чем не бывало питаться мясом.

Трудно представить, что, создавая глаза, природа с самого начала планировала использовать особенности зрения неподвижным глазом для повышения его чувствительности. У высших животных это свойство не сохранилось, глаза получили способность двигаться.

Улучшение зрения шло по пути повышения чувствительности световоспринимающих приборов. Это вносило свои трудности в работу глаза: очень чувствительным приемникам, способным хорошо работать в сумерки, мешает сильный свет. Поэтому, еще на заре создания зрительных рецепторов, они обзавелись диафрагмой, чтобы менять интенсивность светового порога.

У человека, адаптированного к темноте, диаметр зрачка достигает 8 миллиметров, при ярком свете он в несколько раз меньше. Сужение зрачка не просто ограничивает световой поток, оно позволяет увеличить резкость изображения, так как световые лучи в этом случае проходят через центр роговицы и хрусталика, то есть через те части светопреломляющей системы, которые оптически более однородны.

Анализаторы обладают одной интересной особенностью: ощущение, вызванное каким-нибудь раздражителем, исчезает не сразу после прекращения его действия. Благодаря этому мы слышим непрерывные звуки, а не отдельные колебания, и достаточно частые световые вспышки воспринимаем как непрерывный световой раздражитель. Человек перестает замечать отдельные световые вспышки, если они даются с частотой 16–18 в секунду. Эти свойства зрения стали предпосылкой для возникновения особого вида искусства – кино. Благодаря тому что во время демонстрации кинофильмов отдельные диапозитивы проецируются на экран с частотой 24 кадра в секунду, мы видим непрерывное изображение, и у нас возникает иллюзия реальности движения.

Мы, люди, очень медлительные существа, и такая длительность последовательных ощущений нам не мешает жить. А вот птицам и летающим насекомым она не подошла. Если бы и у них ощущение сохранялось так же долго, им трудно было бы видеть окружающий мир при быстром полете. Зато они лишены удовольствия смотреть фильмы в наших кинотеатрах. Чтобы насекомые увидели единое изображение, потребовалось бы менять не меньше 200 кадров в секунду.

Камерный глаз высших животных настолько сложный прибор, что приходится учиться им пользоваться. Эту функцию берет на себя мозг. Раньше, чем пользоваться глазами, мозг должен научиться расшифровывать посылаемую ими информацию. Например, определять, который из двух предметов находится ближе. Может случиться, что их изображения на сетчатке окажутся равными или даже образ далекого предмета будет больше, чем ближнего.

Вообще простое изображение предмета на сетчатке не позволяет судить о его размерах. Решить эти вопросы на основе информации, полученной лишь от светочувствительных элементов, невозможно. Приходится сопоставлять чисто зрительные ощущения с показателями мышечных рецепторов, информирующих мозг о положении каждого из глаз (вернее, о величине угла, под которым пересекаются его оптические оси), а также с величиной аккомодации, то есть степенью изменения кривизны хрусталика. Величина аккомодации позволяет нам ориентироваться в величинах и расстояниях при рассмотрении предмета одним глазом. Этот же механизм используют многие животные, кролики, вальдшнепы, рыбы, устройство лицевой части черепа которых не дает возможность рассматривать интересующие их предметы двумя глазами.

Возможность к дешифровке и объединению оптических и двигательных показателей заложена в конструкции мозга, но этому приходится учиться точно так же, как и управлять своими руками и ногами.

Насекомые своими сложными глазами видят весь мир мозаичным, но им повезло в том отношении, что изображение окружающих предметов получается прямым. Позвоночным животным сложнее пользоваться своими камерными глазами. Поскольку световые лучи, проникающие в наш глаз, проходят сквозь крохотную двояковыпуклую линзу и в ней преломляются, изображение рассматриваемых предметов, сфокусированное на задней стенке глаза, оказывается перевернутым вверх ногами. Почему же мы видим мир нормальным, какой он есть на самом деле? Оказывается, наш мозг, сопоставляя показания, получаемые из глаз, с информацией, идущей от других органов чувств, главным образом от кожных и мышечных рецепторов, еще в раннем детстве привыкает в ней правильно разбираться.

А что будет, если изображение на задней стенке глаза окажется ориентированным правильно? Что увидит наш глаз тогда?

Подобные опыты проводились неоднократно. Вернуть изображению на сетчатке глаза правильное положение можно с помощью специальных очков. В первый момент весь мир кажется опрокинутым. Но если очки носить не снимая, уже через четыре дня мозг перестроится, и мы вновь увидим привычную картину. Зрение становится настолько нормальным, что человек может рисовать, свободно водить машину. Но стоит теперь снять очки, и мир вновь опрокинется навзничь. Опять придется мозгу привыкать к новой манере передачи информации. Какие процессы происходят при этом в мозгу, пока еще окончательно выяснить не удалось, но мы затронули здесь уже другую область – работу головного мозга.

 

Шепот планеты

 

Между зрительным и звуковым анализаторами есть весьма существенная разница: лишь очень немногие из животных способны светиться, тогда как подавляющее большинство тех, кто слышит, имеют специальные устройства, дающие им возможность наполнять мир звуками жизни. Сейчас уже нет возможности полностью восстановить, как развивалась у животных способность использовать звуковые сигналы. Можно лишь предполагать, что звуковой анализатор возник в связи с необходимостью слышать звуки, издаваемые жертвами или врагами.

Когда животные обзавелись ушами, то не могли не заметить, что немаловажную информацию можно получить и от своих ближайших сородичей, если прислушаться к производимым ими звукам. Эти сигналы рассказывали не только о том, что делают в настоящее время члены семьи или стаи, но и давали известное представление обо всем, что творится в мире. Отсюда один шаг до активной посылки сигнала своим сородичам.

У животных выработалась способность производить звуки для общения друг с другом. Чтобы достаточно точно воспроизводить эти звуки, нужно их очень хорошо слышать, поэтому звукопроизводящие и звуковоспринимающие органы должны были развиваться совместно.

Действительно, животные особенно хорошо воспринимают собственные звуки и голоса сородичей. Естественно, они не могли не заметить, что производимые ими звуки могут вызвать появление эха и что совершенно одинаковые звуки каждый раз могут породить весьма различное эхо. Когда природа поняла причину таких различий, она начала экспериментировать и ставила опыты до тех пор, пока не создала такие звуковоспроизводящие и воспринимающие системы, которые позволили животным использовать свои звуки непосредственно для собственной надобности.

Наиболее совершенным звуковым прибором обладают птицы и млекопитающие. Их голосовой аппарат, работающий за счет движения воздуха, способен издавать большую гамму звуков. Не все из них в одинаковой степени одарены природой, некоторых она почему-то обошла, создав их безголосыми. Тогда, чтобы внести лепту в общее море звуков или разнообразить репертуар, животным приходится изобретать свои способы выражения чувств и прибегать иногда для этого к подсобным средствам.

Наиболее характерным звуком для гудсонской совы является громкое щелканье клюва. Виртуозы с помощью клюва могут устраивать целые концерты. Звуки, издаваемые аистами, очень напоминают щелканье кастаньет. Широко варьируя ритм и силу звука, аисты исполняют чудесные серенады.

Дятлу одного клюва оказалось недостаточно. Влюбленный дятел выстукивает для своей подруги целые барабанные концерты, используя в качестве инструмента сухие деревья. Самец куропатки выбивает дробь крыльями, делая до 40 ударов в минуту.

У насекомых нет голосового аппарата, для производства звуков они обычно используют трение. Саранча водит лапкой по своим жестким крыльям. Кузнечики извлекают звук трением надкрылий друг о друга. У сверчков на трущейся поверхности крыла около 150 треугольных призм и четыре перепонки, вибрация которых усиливает звук. Не удивительно, что и уши у насекомых не на голове. У сверчка звуковоспринимающий аппарат расположен на коленке, у саранчи – при основании ножки.

Рыбы извлекают звуки при трении жаберных пластин. Карповые скрежещут глоточными зубами. Очень интересно устроен звуковой аппарат окуневых, особенно развитый у поющих рыб и морского петуха – триглы. Звуки издаются с помощью плавательного пузыря, благодаря сокращению особых барабанных мышц, которые вызывают колебания его стенок.

Многие звуки животные издают во время движения. Блеяние бекаса, несущееся с неба, возникает от вибрации рулевых перьев хвоста во время особого токового полета. Надсадный писк комара, от которого невольно замираешь, ожидая укуса, вовсе не является предупреждением – иду на вы, – какие посылал своим врагам киевский князь Ярослав Мудрый, собираясь на них напасть. Комариный писк возникает от движения крыльев, и, видимо, в некоторые моменты комар и рад бы замолчать, да не может.

Язык животных всегда интересовал людей. Желание понять его возникло еще на заре существования человечества. Жрецы, ученые, художники, писатели не раз обращались к этой теме. Языку животных посвящены целые тома. Среди их авторов много очень известных имен. Большинство этих произведений теперь уже забыты, в том числе «Азбука животных», принадлежащая перу известного английского писателя Чарльза Диккенса. Это было последним произведением выдающегося мастера слова.

Бесчисленные исследования не привели к дешифровке сигналов, которыми обмениваются животные. Только появление аппаратуры, позволяющей записывать, многократно воспроизводить и всесторонне анализировать звериные разговоры, позволило вплотную заняться этой захватывающей проблемой.

Назначение сигналов очень различно. Одни служат сигналом сбора, другие – опасности, третьими оповещают о находке пищи, четвертыми призывают подругу. Мелодичные, чарующие песни наших птиц чаще всего оповещают, что гнездовой участок уже занят.

Очень интересно и не совсем еще понятно, почему песни птиц и лягушек, в сущности несущие очень немного информации, столь сложные, а нередко еще и очень красивые музыкальные произведения. Способность к пению – врожденная реакция, но, чтобы правильно петь, птицам приходится учиться. Птенец, который ни разу не слышал голосов своих сородичей, никогда не станет хорошим певцом. Удивительно не то, что птицы способны учиться, а то, что они обладают хорошим вкусом. Никогда не бывает, чтобы хорошие певцы переняли плохую манеру петь, обычно плохие певцы учатся у хороших. Этим объясняется, почему в одних местах попадаются только хорошие певцы, а в других только плохие.

Язык животных оказался не столь бедным, как полагали. Особенно он богат у существ, живущих большими сообществами. На что уж куры глупые птицы, но даже у них ученые обнаружили до 30 слов-сигналов.

Каждому виду присущ только ему свойственный набор сигналов, а виды, широко распространенные по земному шару, распадаются даже на отдельные национальности или, вернее, языковые группы. Оказалось, что вороны, живущие в Соединенных Штатах, совершенно не понимают французских, а черноморские дельфины не знают языка своих средиземноморских собратьев.

С другой стороны, самые неродственные звери, если им приходится жить вместе, частично осваивают сигналы своих соседей, особенно оповещающие об опасности. Сигнал тревоги, который подает своим стрекотанием сорока, хорошо понятен всем обитателям окрестных лесов и полей. Даже косолапый хозяин тайги медведь или гроза уссурийских лесов полосатый красавец тигр не пропустят его мимо ушей. Наконец, среди птиц встречаются полиглоты. Это те, кому приходится кочевать. Так они осваивают различные варианты языка своих оседлых сородичей.

Голоса отдельных видов животных настолько разнятся, что их хозяев нередко легче отличить по этому признаку, чем по каким-нибудь другим. Знатоки птиц без ошибки скажут, к какому виду относится поющая пеночка, и, пожалуй, затруднятся определить, если птица попадет им в руки. Значительное различие голосов имеет глубокий смысл. Очень похожие пеночки никогда не дают гибридов, звуковые сигналы помогают им без ошибки узнавать друг друга. Такое же значение имеют песни многих насекомых. Даже комары узнают своих подруг по характерному для каждого вида писку, зависящему главным образом от частоты движения крыльев.

Сигналы, посылаемые животными, отличаются по длительности, по амплитудной и частотной модуляции, величине интервалов между отдельными звуковыми посылками, ширине спектральных полос, крутизне фронта нарастания и спадения сигнала и по ряду других признаков. Однако, как ни строго различаются между собой голоса животных, детальный анализ производимых ими звуков выявил известное сходство.

Оказалось, например, что сигнал воздушной тревоги у большинства птиц и мелких животных – длительный, медленно нарастающий звук. Такой сигнал с малой крутизной фронта нарастания очень трудно локализовать в пространстве, но в данном случае это значения не имеет. Когда враг грозит сверху, когда над головой ястреб или орел, готовый вас сию же минуту схватить, бесполезно удирать сломя голову. Сигнал «воздушной тревоги» не дает животным никакого указания на то, справа или слева, спереди или сзади угрожает опасность, а следовательно, не подсказывает, в какую сторону бежать. Остается только замереть на месте в надежде, что тебя не заметят, или юркнуть в ближайшее убежище. И только это может спасти при нападении сверху.

Совсем иначе выглядят сигналы наземной тревоги. В этом случае очень важно, с какой стороны грозит опасность, а следовательно, необходимо точно уловить, откуда подан сигнал. Поэтому сигнал наземной тревоги должен быть таким, чтобы его можно было точно локализовать. У кур это пачки коротких импульсов, круто нарастающих вначале, а затем медленно спадающих. На сигнал наземной тревоги птицы взлетают, а животные убегают в направлении, противоположном тому, откуда раздался сигнал.

Несмотря на неожиданное богатство языка животных, который может быть не только звуковым, это все же язык второго сорта. Все «слова» звериного языка передаются по наследству, а не выучиваются, как приходится делать детям. Сигналы, которыми обмениваются животные, возникают у них непроизвольно под влиянием тех или иных эмоциональных состояний. Когда курица испуганно кричит, увидев падающего с неба коршуна, это вовсе не означает, что она хочет оповестить подружек о грозящей опасности. Крик у нее вырвался так же непроизвольно, как вскрикиваем мы, случайно притронувшись к горячему утюгу. То, что язык животных врожденный, а обмен информацией происходит непроизвольно, одна из причин, почему он в отличие от языка людей развивается очень медленно.

Животные, длительное время обитающие вместе, в конце концов научаются извлекать из все тех же непроизвольных звуковых сигналов гораздо больше информации о нюансах окружающей обстановки. Так, по звуковым реакциям и общему поведению одной из двух живущих в доме собак вторая может совершенно точно знать, кого из членов хозяйской семьи увидела в окне ее товарка.

Животные могут и более активно пользоваться звуковой сигнализацией. Собаку не трудно научить подавать голос, когда ей хочется пить, громко и часто лаять, когда она голодна, и визжать, когда настало время для прогулки. Попугаев, голосовой аппарат которых ближе всего к человеческому, можно научить произносить отдельные слова и даже целые фразы на любом языке и употреблять их в соответствии с окружающей обстановкой. Попугай жако, которого привез в Англию отставной боцман одного из торговых судов, научился кричать «пить», когда в баночке высыхала вода, и говорить «дай салата», если ему хотелось пощипать зелени. Попугай никогда не забывал пожелать людям «спокойной ночи», даже если в комнате никого не было, прежде чем засунуть голову себе под крыло.

Подобная реакция уже шаг вперед по сравнению с непроизвольной сигнализацией, о которой говорилось выше, хотя от человеческой речи они все еще достаточно далеки. Это всего лишь условнорефлекторные реакции, ничуть не сложнее обычного условнорефлекторного отделения слюны, которое возникает у собаки в ответ на бренчание миски, когда хозяин наливает похлебку.

Возможны ли между животными более сложные формы сигнализации?

Недавно американские исследователи, изучавшие дельфинов, столкнулись с интересной загадкой. Двух животных, живших в одном бассейне, обучили при показе одной из двух фигур нажимать на левый рычаг, а при показе второй – на правый. Затем бассейн разгородили на две части. Дельфин, оставшийся в правой половине, хорошо видел фигуры, но не имел возможности дотянуться до рычагов. Второй дельфин, помещенный в левую часть бассейна, мог свободно нажимать на рычаги, но фигуры, предъявление которых служило сигналом для нажима, ему не были видны.

Когда обычный опыт впервые повторили в разгороженном бассейне, ученые были поражены тем, что левый дельфин, не видя сигнальных фигур, без ошибки нажимал на нужный рычаг. Это оказалось возможным потому, что правый дельфин сумел информировать своего левого собрата, когда и какие фигуры показывали.

Дельфины пользовались звуковой сигнализацией. Ее удалось даже записать на магнитную ленту. Неясным остается пока только характер этой информации. Возникают ли у правого дельфина звуковые реакции непроизвольно, как у собаки, увидевшей в окно своего хозяина, или дельфины могут в случае надобности активно обмениваться информацией об окружающей обстановке. Если правильным окажется второе предположение, это будет означать, что сигнальные реакции дельфинов ближе к разговору людей, чем сигнализация любых других животных.

Большое разнообразие и вместе с тем строгая специфичность звуковых сигналов не могли не вызвать подражания. Иногда сходство голосов двух животных бывает чисто случайным. Непосвященному горожанину, оказавшемуся ночью в лесу, где празднуют свои свадьбы безобидные, грациозные косули, придется испытать немало страха. Неожиданно сильный голос влюбленного самца очень напоминает рев крупного хищного зверя. Впрочем, ученые не знают, действительно ли это случайное сходство. Не исключено, что природа, планируя призывный клич косули, решила сделать его притягательным для самки и устрашающим для всех остальных. А как же иначе охранить этих беззащитных и в остальное время таких тихих и незаметных созданий, которые и защитить-то себя не в состоянии?

Гораздо чаще мы встречаемся с «сознательным» подражанием. Осы опасные существа, не каждый отважится на них напасть. Подражать им для беззащитных существ было бы весьма выгодно. Такие виртуозы нашлись. Там, где постоянно летают осы, нетрудно встретить крупных мух. Оса в пoлeтe жужжит, делая крыльями 150 взмахов в секунду. Мухи тоже жужжат, и звук их очень похож на осиный: они делают 147 взмахов в секунду. Такого сходства достаточно, чтобы хищники путали их с осами. Сами же мухи обладают достаточно изощренным слухом, чтобы не ошибаться: они никогда не пытаются заводить с осами любовные шашни.

Пчелиный улей – совершенно неприступная крепость. Только медведь решается вступить с пчелами в открытый бой, но и его нередко обращает в бегство дружная семья.

У летка в улей постоянно дежурит охрана, всегда готовая дать отпор любому обидчику. Мимо недремлющей стражи трудно пройти незамеченным. Как ни заманчив мед, как ни много желающих им полакомиться, пробраться в улей никто не может.

Вот почему ученых всегда удивляло, как это удается крупной бабочке бражнику «мертвая голова». Крылья и брюшко этой бабочки окрашены в черный и желтый цвета, а на спинке есть группа желтовато-белых пятнышек, очень напоминающих по форме череп и скрещенные кости, благодаря чему она и получила свое название. Проникнув в улей, «мертвая голова» выпивает огромное количество меда и, отяжелевшая, почти неспособная лететь, безнаказанно убирается восвояси. Бражник умеет издавать довольно резкие звуки. Эти «песни» «мертвой головы» и завораживают стражу. На пчел они оказывают такое же неотразимое влияние, какое песни сладкоголосых сирен на древних мореходов. Недавно удалось понять причину этой власти: оказалось, что бабочка умеет подражать «голосу» молодой пчелиной матки.

Пчелы без матки чувствуют себя сиротами. Когда в начале лета часть их вместе со старой маткой покидает отчий дом, улей погружается в уныние. Но вот из кокона вылупилась молодая матка, и в притихшей на несколько дней пчелиной семье все изменилось. Почти сразу же молодая матка начинает знакомиться с ульем, оживленно бегает по сотам и при этом «тюкает» (поет), объявляя рою о своем появлении на свет.

Тюканью только что вышедшей из кокона молодой матки и подражает «мертвая голова». На пчел это действует как магическое заклинание. Воспользовавшись временным замешательством, «мертвая голова» забирается на соты, торопливо сосет мед и спешит покинуть улей, пока его обескураженное население не успело прийти в себя.

Случаи звукоподражания, своеобразной звуковой мимикрии, встречаются и у других животных, хотя эти явления изучены еще недостаточно хорошо. Они чаще наблюдаются у водных животных, для которых звуки имеют гораздо большее значение, чем для наземных. К звукоподражанию прибегают хищники, чтобы беспрепятственно подобраться к жертвам; со своей стороны, жертвы подражают более сильным существам, чтобы отпугнуть хищников. Нередко используются ультразвуки, не воспринимаемые человеческим ухом, что значительно затрудняет изучение этого интересного явления.

Для животных, ведущих ночной образ жизни, использование эха так же привычно, как и другие виды звуковой сигнализации. Принцип прост: звуковая волна, порожденная животным, отражается от встретившихся ей на пути предметов и возвращается обратно. По тому, сколько времени потребовалось, чтобы звуковая волна вернулась обратно, животное может судить, как далеко находится предмет, а по характеру эха – и о свойствах этого предмета.

Способностью к эхолокации обладает подавляющее большинство высших животных. Лишенная зрения собака за один-два дня способна научиться не натыкаться на стены и крупные предметы. Ее изощренное ухо легко замечает отраженный от сплошных поверхностей звук, порождаемый шумом ее шагов. После более длительной тренировки собака может научиться избегать и более мелкие предметы.

Человек также способен пользоваться эхом. Слепые от рождения, обладающие очень развитым слухом, ориентируясь по звуку собственных шагов или палки, научаются в конце концов не натыкаться даже на не очень толстые деревья. По сравнению с дельфинами или летучими мышами это, конечно, очень грубый способ ориентировки, но характер звуков, используемых человеком, не дает ему возможности осуществлять более точные реакции.

Сходным образом ориентируются рыбы, движение их тел вызывает в подводном царстве местные сжатия, распространяющиеся в разные стороны, как обычные волны. Их отражение от встречных предметов улавливается особым органом, боковой линией, которая есть у всех рыб и хвостатых амфибий. С помощью такой вибролокации (волны, создаваемые рыбами, не относятся к звуковому диапазону) они даже ночью не натыкаются на подводные препятствия.

Чтобы локация стала более совершенной, природе потребовалось реконструировать у животных звуковоспроизводящие органы. Во-первых, при локации нет необходимости посылать звук во все стороны, как это происходит при звуковой сигнализации между животными. Гораздо выгоднее посылать звук узким пучком строго в том направлении, которое необходимо обследовать. Во-вторых, не каждый звук пригоден для локации. Чтобы звук хорошо отразился, препятствие должно быть в 2–3 раза больше звуковой волны. Поэтому для локации используются, как правило, короткие волны.

Из птиц, способных к эхолокации, наибольшей известностью пользуется гуахаро, живущий на островах Карибского моря и в близлежащих странах Латинской Америки. Эти крупные, шоколадно-коричневые в белую крапинку птицы, размах крыльев которых достигает без малого метра, очень похожи на больших ястребов.

У гуахаро ночной образ жизни. Весь день проводят они в глубине пещер, где вьют свои гнезда на недоступных карнизах. Ночью птицы вылетают на кормежку в поисках плодов тропических пальм, а с рассветом возвращаются обратно. Уверенно проносятся они в полной темноте по извилистым подземным коридорам, не натыкаясь на стены и выступы. Птицам хорошо «видна» дорога, они «освещают» ее звуком.

Во время полета гуахаро издают частые, короткие звуки в диапазоне 7000 колебаний в секунду, вполне доступные человеческому уху. Звук, как известно, в воздушной среде распространяется со скоростью 340 метров в секунду, то есть в 12–15 раз быстрее скорости птицы, поэтому звуковая посылка всегда успевает на много раньше, чем сами гуахаро, достичь препятствия и вернуться обратно. Птицы получают своевременную и исчерпывающую информацию о ближайших отрезках пути. Для той же цели пользуются звуковой эхолокацией ласточки-саланганы и некоторые другие ночные птицы.

Летучим мышам и дельфинам эхолокация нужна не только для того, чтобы избегать препятствий. Она необходима и при поисках пищи, поэтому им пришлось взять на вооружение ультравысокие звуки с частотой от 40 до 300 тысяч в секунду и длиной волны 1–3 миллиметра.

Летучие мыши, питающиеся плодами, ягодами и крупными сидящими на ветвях и листьях насекомыми, и вампиры, пьющие кровь крупных животных, лоцируют с помощью звуков слабой интенсивности и частотой до 150 тысяч в секунду. У этих животных задача относительно легкая: отыскать хотя подчас и небольшие, но неподвижные объекты, поэтому они используют звуки постоянной частоты.

Гораздо сложнее задача у дельфинов и летучих мышей, хватающих добычу на лету. Им нужно получить информацию не только о том, где в данный момент добыча, но и куда, с какой скоростью держит путь. Видимо, поэтому большинство летучих мышей используют для локации звуковые посылки, в которых частота колебаний звуковых волн меняется.

Например, некоторые гладконосые мыши, повиснув где-нибудь на ветке вниз головой, как птицы-мухоловки, высматривают добычу, поворачивая мордочки в разные стороны и посылая в пространство 10–20 раз в секунду сигналы, состоящие примерно из 50 звуковых колебаний, которые начинаются на частоте 90 тысяч, а заканчиваются при частоте 45 тысяч, то есть в одной посылке нет даже двух одинаковых частот. Когда добыча обнаружена, частота посылок увеличивается до 200 в секунду, а длительность каждой сокращается до 0,001 секунды.

Ученые считают, что, определяя направление полета жертвы, летучая мышь руководствуется изменением длины звуковых волн эха по сравнению с размером волн локационного импульса. Если добыча движется навстречу мыши, то отраженные звуковые волны будут короче. Они как бы сжимаются летящей жертвой, и чем ее скорость больше, тем больше будут сжиматься отраженные волны, тем звуковой состав эха будет более высоким. Если же добыча улетает от мыши, звуковые волны эха растягиваются тем больше, чем быстрее она летит, и тем более низкий звук доходит до ушей преследователя.

Эхолокатор летучих мышей настолько совершенен, что они могут отличить одинаковые кусочки бархата от наждачной бумаги и фанеры. Каждый предмет по-своему отражает звуковые волны. От гладких поверхностей они отражаются полнее, тогда как шероховатые, мягкие поверхности их гасят. Этим объясняется, почему иногда летучие мыши запутываются в высоких дамских прическах. Они вовсе не собирались причинить вреда их испуганным обладательницам, а просто случайно столкнулись с пышной шевелюрой, не получив от нее эха.

Насекомые, которые служат пищей летучим мышам, давно догадались об особенностях отражения звуковых волн. Они поняли, что могут стать невидимыми. Вот поэтому, а вовсе не из-за ночного холода, тело большинства ночных бабочек, и мотыльков, и даже некоторых жуков покрыто густым и мягким пушком. Они дают очень слабое и чрезвычайно расплывчатое эхо, так что летучая мышь может даже и не заметить добычи. А если у бабочки к тому же есть звукоприемник, настроенный на волну локатора ночной хищницы, шансы остаться в живых сильно повышаются, ведь чтобы спастись, насекомому нужно только сложить крылья и камнем рухнуть в траву.

С помощью своего удивительного локатора летучие мыши могут не только ориентироваться в воздушном океане, но способны даже «просвечивать» более плотные среды. Среди них есть любители рыбного стола. Летая над самой поверхностью воды, они посылают вниз звуковые сигналы и, как только получат нужный ответ, опускают лапы в воду и вытаскивают на поверхность свою добычу.

Ученые не сразу поняли, как им это удается. Мало того что уходящий в воду звуковой сигнал частично отражается от ее поверхности, а возвращающееся назад эхо сильно рассеивается воздухом, акустические свойства воды и рыбьего тела, которое само на 80 процентов состоит из воды, имеют большое сходство, и звуки, издаваемые летучей мышью, практически не должны отражаться от рыбьих тел. Так в действительности и происходит. Сами рыбы для летучих мышей, оказывается, совершенно не «видны». Но у них есть небольшие плавательные пузыри, наполненные газом. Они-то и выдают рыб. Летучие мыши, прощупывая локатором толщу воды, легко их обнаруживают.

Особенно большие специалисты в эхолокации киты и тюлени полярных областей, которым большую часть года приходится доставать рыбу из-подо льда, покрытого к тому же толстым снежным покровом. В долгие полярные ночи ничто, даже северные сияния, не освещает подводное царство. Естественно, приходится прибегать к помощи ушей.

Локацией пользуются лесные мыши, землеройки и многие другие животные, но мы этих звуков не слышим.

Кому приходилось наблюдать летучих мышей в неволе, вероятно, замечал, что в спокойном состоянии мышь никогда сразу не полетит. Прежде чем оторваться от опоры, она, сложив губы в небольшую трубочку, опишет мордочкой в воздухе несколько кругов, с каждым разом все больше увеличивая их радиус.

Многие летучие мыши лоцирующий импульс отправляют не ртом, а через ноздри. Натуралисты даже и не догадывались, что мыши умеют издавать какие-нибудь звуки. Если бы мы обладали хотя бы такими же ушами, какие имеют собаки, мы могли бы кое-что слышать. Ведь вампирам, нападающим на людей, лошадей и других сельскохозяйственных животных, редко удается полакомиться собачьей кровью. Видимо, лоцирующие импульсы вампира будят собак, и они не дают себя в обиду.

 

 

Индивидуальный холодильник

 

Странная железа

 

Когда читаешь труды ученых древности, всегда поражаешься, как много научных открытий было сделано с помощью простых наблюдений и последующих догадок. Еще две тысячи лет назад знания ученых и врачей о работе большинства органов человеческого тела были достаточно глубокими. Однако о настоящей функции мозга они даже не подозревали. Смешно сказать, но величайший греческий ученый Аристотель, живший в четвертом веке до нашей эры, считал мозг всего лишь большой железой, предназначенной для охлаждения крови. Теперь мы точно знаем, что это вовсе не холодильник, знаем, для чего нужна так называемая «железа», но зато как она работает, еще во многом остается тайной.

Прежде чем стать человеческим мозгом, нервная система проделала длинный путь развития. Начался он в первозданном океане, когда отдельные разрозненные биомолекулы слиплись, наконец, в комочки живого вещества. Эти первичные живые частички и за ними более сложные одноклеточные организмы, которые впоследствии стали селиться большими колониями, обладали двумя основными свойствами – раздражимостью и проводимостью, то есть способностью передавать возбуждение на соседние клетки.

Позже у многоклеточных животных начало намечаться разделение функций. У кишечнополостных впервые возникли особые образования – нервные клетки, раздражимость и проводимость которых достигла высокой степени развития. Их функцией становится более тонкое восприятие воздействий внешней среды и передача раздражения на те клетки или органы, которые способны ответить полезной для организма реакцией.

Нервные клетки примитивных кишечнополостных, соединяясь друг с другом своими отростками, образуют нервную сеть. Это самая примитивная нервная система. Дальнейшим усовершенствованием было появление отдельных сгущений нервных клеток и затем превращение их в более организованные, более компактные нервные тяжи. Они возникали в тех местах, где требовалась согласованная работа большого количества сократимых элементов. Такие сгущения образуют нервные кольца, проходящие по краю купола медузы. Благодаря им сжимается и расслабляется сразу весь купол, что позволяет медузе активно передвигаться в толще воды.

У плоских червей, потомков кишечнополостных животных, все нервные клетки собраны в тяжи, которые оплетают тело, создавая замысловатые узоры. Многочисленные перемычки между тяжами и непосредственные пересечения самих тяжей обеспечивают возможность совместного функционирования всей нервной системы. Безусловно, диффузная сеть нервных тяжей стала шагом вперед по сравнению с сетью беспорядочно разбросанных нервных клеток. Однако эта стволовая нервная система, призванная руководить работой отдельных частей и органов животного, оказалась очень громоздкой и сложно устроенной и сама нуждалась в органе, который направлял бы ее работу.

Такой центральный орган появился впервые у высших представителей плоских червей. В некоторых местах пересечения нервных стволов количество нервных клеток увеличилось – образовывались ганглии, которые не только взяли на себя наиболее сложные функции, но и оказывают влияние на работу остальных частей нервной системы. Ганглии в первую очередь возникают вблизи органов чувств: глаз и органа равновесия, а также около глотки, с помощью которой плоские черви хватают, удерживают и проталкивают в кишечник свою добычу.

Ганглионарный тип нервной системы оказался очень удобным. У кольчатых червей, которые, по-видимому, произошли от плоских, все нервные клетки собраны в ганглии, а в нервных стволах, их соединяющих, проходят лишь длинные отростки этих клеток. Обычно в каждом членике червя есть пара ганглиев, связанных между собой перемычкой. Кроме того, каждый ганглий соединен нервными стволами с соответствующими ганглиями предыдущего и последующего членика. В таком виде нервная система очень напоминает лестницу. Передние пары ганглиев самые крупные. Они выполняют наиболее сложную работу и держат в подчинении всю остальную нервную цепочку.

У высших червей ганглии сближаются между собой, составляя единое компактное образование. Такая нервная система отчасти напоминает нервную систему современных позвоночных животных.

Каким был мозг у первых позвоночных, мы не знаем. У ланцетника, одного из самых примитивных представителей хордовых, есть только нервная трубка, головного мозга у него еще нет. С этим отделом мозга можно познакомиться у круглоротых (миноги и миксины) и у рыб.

Уже у этих еще очень примитивных животных головной мозг имеет все основные отделы, на которые подразделяется и мозг человека. Отделы одни и те же, но строение их и, главное, функция, конечно, существенно различаются. Передний мозг, основной организатор психической деятельности человека, у рыб и миног занят только анализом обонятельных раздражений. У амфибии его функции несколько усложнились.

Покинув воду, амфибии столкнулись со многими трудностями. В частности, очень сильно пострадало обоняние. Рыбы воспринимают запахи растворенных в воде веществ. Амфибии же, выйдя на сушу, чтобы уловить какой-то запах, должны были сначала растворить пахучие вещества в каких-нибудь жидкостях носа и только затем уже «нюхать». Их обонятельные рецепторы не сумели сразу приспособиться к новым условиям работы, и передний мозг, не получая никакой информации, оказался как бы не у дел. Видимо, поэтому он взялся за другую работу, не сидеть же без дела! Передний мозг амфибий стал принимать участие в анализе зрительных, слуховых, а возможно, и многих других раздражителей. Впервые возник отдел мозга, куда потекла вся информация.

Особенно быстро прогрессировал мозг млекопитающих. Прежде всего появились отдельные, правда, еще плохо очерченные зоны, каждая из которых брала на себя функцию по анализу только одного какого-нибудь вида раздражителей: зрительных, звуковых, обонятельных, кожной чувствительности. У более развитых млекопитающих между анализаторными зонами возникли крохотные островки особой, так называемой ассоциативной коры. По мере развития мозга эти зоны росли и развивались. У обезьян и человека они занимают значительную часть поверхности полушарий большого мозга. Нетрудно догадаться, что именно они и выполняют наиболее сложные, чисто человеческие психические функции.

 

Работа мозговых извилин

 

Человеческий мозг – самое удивительное из созданного природой на нашей планете. Перед его необозримой сложностью наука пасовала вплоть до XX века. Первые серьезные достижения в изучении работы мозга принадлежат великому русскому ученому Ивану Петровичу Павлову и его многочисленным ученикам. Успех объясняется тем, что с самого начала изучалось явление, которое, с одной стороны, можно было рассматривать как простой физиологический акт и, таким образом, исследовать с помощью привычных физиологических методов, а с другой стороны, оно же было и психическим явлением. Причем, как это выяснилось в дальнейшем, оно и есть тот элементарный психический акт, тот «кирпичик», из которых, по выражению Ивана Петровича Павлова, строится все грандиозное здание мыслительной деятельности. Это явление было названо условным рефлексом.

Нельзя сказать, что учение об условнорефлекторной деятельности мозга сразу получило всеобщее признание. Ученые старшего поколения еще помнят время, когда мало кто верил в возможность разобраться в чрезвычайно сложной работе человеческого мозга. С тех пор положение изменилось. Теперь уже трудно встретить такого неверующего, однако до сих пор у многих вызывает недоверие то, что в основе мыслительной деятельности лежат всего лишь системы условных рефлексов (или временных связей), то есть чрезвычайно простые реакции организма.

Безусловно, мозг наш обладает многими еще не познанными пока механизмами, обеспечивающими мыслительную деятельность, но стержень ее – это все-таки системы и иерархии условных рефлексов.

Любой клетке тела, тем более одноклеточным организмам, в какой-то мере свойственно сохранять следы прежних раздражений и изменять свои реакции в соответствии с предшествующими воздействиями, то есть вырабатывать временные связи. Эта функция более ярко выражена у нервных клеток и с их появлением становится прерогативой нервного аппарата.

Временные связи образуются при совпадении во времени двух событий, важного для организма и неважного. Если перед тем как получить еду, собака всякий раз слышит бренчание миски, то у нее очень скоро выработается условный рефлекс, и эти звуки начнут вызывать слюнотечение и другие реакции, которые раньше могла дать только пища.

Условные рефлексы – это набор элементарных знаний об окружающей действительности. В условных рефлексах получают отражение основные закономерности, характерные для среды, где находится животное. Когда после нескольких повторений бренчания миски и кормления у животного выработался условный рефлекс, это значит, что оно «заметило» взаимосвязь обоих явлений, и теперь условный раздражитель (бренчание миски) становится как бы сигналом второго раздражителя и поэтому может вызывать все те реакции организма, которые раньше вызывала сама пища.

Сигнальная деятельность (образование временных связей) – явление всеобщее, свойственное всем животным нашей планеты. Мало того, можно думать, что этот принцип имеет еще более универсальный характер, одинаково приложимый к любым организмам, и мы встретимся с временными связями у любых животных с любой планеты из любой звездной системы. Есть все основания предполагать, что образование временных связей относится к самым основным, самым всеобщим законам природы, что оно одинаково присуще любым формам высокоорганизованной материи. Безусловно, свойства временных связей могут при этом варьировать.

Животные нашей планеты обладают одним удивительным приспособлением, которое помогает изучать окружающий мир, накапливать всю жизнь новые и новые знания. Это приспособление отчасти связано с работой органов чувств. Они устроены таким образом, что быстро «привыкают» к длительно действующим раздражителям и перестают на них реагировать, зато на все новое отзываются очень живо.

С этим явлением, вероятно, каждый знаком. Войдя с улицы в помещение, мы можем почувствовать довольно резкий и даже неприятный запах, но через несколько минут он перестает нас беспокоить. Наш нос привыкает и перестает посылать мозгу соответствующую информацию. Однако стоит нам ненадолго покинуть помещение и потом вернуться, как все начнется сначала.

Благодаря этой особенности работы органов чувств мозг всегда получает информацию о всех новых событиях в окружающей среде. Каждый новый раздражитель вызывает к тому же ориентировочный рефлекс, что помогает организму подготовиться к любым неожиданностям. Если же вслед за новым раздражителем, не имеющим для животного существенного значения, последуют важные события, образуется условный рефлекс, новый раздражитель становится сигналом наступления более значительного события.

Безусловно, образованием простых временных связей не исчерпывается работа головного мозга человека. В пищевых, оборонительных, половых и других условных рефлексах низших животных получают отражение лишь важнейшие для организма закономерности окружающей среды. На определенном этапе развития животного мира, отчасти уже у рептилий, а главным образом у птиц и млекопитающих, возникла способность к образованию временных связей при действии любых раздражителей, даже и не имеющих для животных непосредственного значения. Это сильно расширило границы познавательной деятельности мозга, ведь в таких временных связях могут получить отражение любые закономерности окружающего мира.

Действительно, путем появления многочисленных временных связей между отдельными раздражителями или их комплексами создаются у нас образы окружающего мира. Именно эти обычно ничем во внешних реакциях не проявляющиеся системы временных связей и стали основным фондом мыслительной деятельности человека. Любой раздражитель, входящий в такие комплексы, способен оживить длинные цепи взаимосвязанных временных связей.

Способность к образованию временных связей у нас общая с животными. В этом отношении мы отличаемся от них скорее количественно, чем качественно. Людьми нас сделала речь. Для животных сигнальными могут быть только непосредственные раздражители: обонятельные, вкусовые, термические, звуковые, зрительные. Для человека же, кроме этих раздражителей, как бы заменяя их или становясь их сигналами (поэтому-то ученые и называют речь второй сигнальной системой), служат соответствующие слова нашей речи, в каком бы виде они нами ни воспринимались: на слух, зрительно (письменная речь), осязательно (азбука для слепых), а при внутренней речи и кинестетически (ощущения, возникающие в мышцах языка и глотки, когда мы говорим).

Речь дает человеку два существенных преимущества. Во-первых, она позволяет качественно новым образом перерабатывать получаемую информацию. В простом условном рефлексе уже заключена высокая степень обобщения и в то же время отвлечения от действительности. Ведь когда на бренчание миски у собаки вырабатывается пищевой условный рефлекс, это значит, что звук как бы обобщается с пищей. В то же время есть явное отвлечение от действительности. Ведь звук, хотя и приобрел способность вызывать пищевую реакцию, пищей от этого не стал.

Раздражители второй сигнальной системы – слова обеспечивают гораздо более высокую степень обобщения и отвлечения, чем раздражители первой сигнальной системы. Появление речи создало условия, позволившие человеку взамен образов и комплексов раздражителей оперировать понятиями, что значительно упростило и расширило возможности познавательного процесса.

Во-вторых, речь у человека участвует в образовании временных связей. Мало того, с помощью второй сигнальной системы происходит образование громадного большинства временных связей человека, причем уже без участия обычных раздражителей. Человеку нет необходимости, как животным, каждый раз самому знакомиться с тем или иным явлением. Временные связи беспрерывно образуются у нас с помощью речи. Это создало условия для передачи знаний от одного человека к другому и очень сокращает время, необходимое для познания основных закономерностей окружающего мира. Изобретение письма еще более упростило этот процесс, сделав необязательным личный контакт людей и позволив длительно хранить накопленные знания и передавать знания не только от одного человека к другому, но и от одного поколения людей к другому.

 

Опоздание смерти подобно

 

Около 30 веков назад на полуострове Пелопоннес, самой южной части теперешней Греции, существовало могущественное и воинственное государство Спарта. Во главе его, как и многих других государств той эпохи, стоял царь. Случилось так, что однажды трон Спарты унаследовал несовершеннолетний юноша Харилай. По вполне понятной причине Харилай особой властью не пользовался, страной управлял его дядя и опекун Ликург. На столь высоком посту Ликург нажил себе немало врагов и впоследствии вынужден был покинуть Спарту.

Годы изгнания не пропали впустую, у него было время многое повидать и о многом подумать. Ликург объездил Малую Азию и Египет, посетил Крит и, вернувшись на родину, привез проект новых законов страны. По этим законам царская власть в Спарте должна была переходить по наследству, причем править страной полагалось двум царям сразу, в помощь которым придавался совет старейшин из 28 геронтов. Кроме того, наиболее важные вопросы должны были обсуждаться на народных собраниях, где правом голоса пользовался каждый гражданин, достигший 30 лет. Законы Ликурга предполагали равенство имущества для всех граждан страны и много других демократических нововведений.

Легенда рассказывает, что Ликург заставил спартанцев поклясться, что они ни в чем не изменят законы в его отсутствие, и пустился в новое путешествие, во время которого сознательно уморил себя голодом, велев сжечь собственный труп, а пепел развеять в море: иначе спартанцы, перенеся его останки в Спарту, могли бы считать себя свободными от торжественно данной клятвы.

Безусловно, большинство законов Ликурга является образцом человеческой мудрости. Для нас наиболее существенно то, что они обращали особое внимание на физическое развитие людей, в силу чего ими строго, до мельчайших подробностей, регулировался образ жизни граждан Спарты. Ликурговы законы ограничивали частную собственность, обязывали жителей страны вести здоровый и умеренный образ жизни. Спартанцы должны были до самой смерти оставаться военнообязанными, принимая активное участие во всех войнах своего государства, не имели права уделять значительного внимания своему быту, обедать могли только в сиситиях – общественных столовых и до 7 лет воспитывать своих детей в государственных школах под руководством опытных воспитателей. Как известно, суровость спартанского воспитания вошла в поговорку.

Вероятно, Ликург смог не только создать и обосновать теорию воспитания, но и умело пропагандировал свои идеи. Легенды рассказывают, что однажды он отобрал у ощенившейся собаки двух щенков и посадил их в глубокую яму, куда никто из людей не входил, а воду и пищу опускали вниз на веревке. Двух других щенков от той же собаки Ликург оставил расти на свободе, где они могли общаться с людьми и другими животными. Когда щенята выросли, он в присутствии большого скопления народа проделал интересный опыт, выпустив на виду этих собак зайца. Как и ожидал Ликург, щенок, выросший на свободе, погнался за зайцем, догнал его и задавил. Второй щенок, выращенный в яме, повел себя совсем иначе. Вместо того чтобы помочь брату, он сам кинулся наутек от зайца. Можно ли еще ярче продемонстрировать значение воспитания в формировании характера? Если легенда правдива, Ликурга следует считать основоположником экспериментальной педагогики.

Нельзя сказать, что у Ликурга не было последователей. Ученые и педагоги давно уже обратили внимание на важность первых лет жизни ребенка для формирования личности будущего человека. Есть сторонники у Ликурга и в наши дни, но ни одно современное государство не рискнуло узаконить принудительное воспитание малолетних детей, а жаль.

Кто из родителей не любит своего дитяти, не оберегает его от жизненных трудностей, опасностей и невзгод, от всяческих болезней и усталости! Да и можно ли поступать иначе? Любовь к ребенку – такое естественное, такое понятное чувство, что иначе вести себя мы просто не можем. Плохо только, что большинство при этом нередко перебарщивают и тем наносят непоправимый вред самому дорогому для нас существу.

Опыты показали, что молодые крысы, которые в первые дни после рождения подвергались механическим и электрическим раздражениям или периодическому охлаждению, во взрослом состоянии лучше переносят голодание, недостаток воды и холод. Воздействуя на организм детенышей сельскохозяйственных животных, удается изменить ряд функций организма. В практике широко используется помещение новорожденных телят, ягнят или козлят в среду с низкой температурой, что приводит к формированию стойкого типа терморегуляции и большой устойчивости к холоду у взрослых животных.

Честное слово, нечто похожее не помешало бы и нашим детям. Но мы не только не закаливаем их, а порой мешаем им учиться, не давая возможности самостоятельно преодолевать даже самые крохотные житейские трудности. Обычно ребенка от всего оберегают, считая, что всему он сможет научиться потом, в «свое время», когда подрастет и поумнеет. А это воистину страшно. Хочется крикнуть: «Люди добрые, бабушки и дедушки, родители, что вы делаете с вашими детьми? Зачем вы мешаете им нормально развиваться?»

Беспокойство не случайно. Дело в том, что для образования каждого навыка есть свое, совершенно определенное время, когда он легче всего вырабатывается, и нередко бывает так, что в иные периоды этот навык образовать уже совершенно невозможно.

Родителям и воспитателям следовало бы помнить строчки из четверостишия Омара Хайяма:

 

Ловите каждое летящее мгновенье,

Его не подстеречь уж никогда потом!

 

Правда, следует сказать, что о развитии детей известно пока очень мало, зато о животных материала накоплено достаточно много. Все новорожденные детеныши, и у низших и у высших животных, в одинаковой мере снабжены очень точной и детально разработанной программой поведения. Без нее они просто не могли бы существовать. Детеныши всех млекопитающих умеют сосать, птенцы выводковых птиц – широко открывать рот, чтобы родители могли их накормить. Утята, гусята, цыплята, детеныши многих копытных животных с самого рождения умеют следовать за своими матерями. Все малыши в случае опасности умеют затаиваться.

Все эти сложные поведенческие акты возникают не сами по себе, их вызывают вполне определенные раздражители. У детенышей всех кошек (у львенка, тигренка, котенка) и у малышей псовых (щенят, волчат, лисят) сосание вызывается прикосновением к мордочке шерсти. Затемнение у детенышей копытных вызывает подъем головы и сосание. В естественных условиях это происходит всякий раз, когда мать оказывается над своим малышом. Затемнение входа в гнездо или его легкое сотрясение вызывает пищевую реакцию у птенцов. Тревожный крик родителей – и малыши затаиваются.

Природа разработала детальные программы поведения для каждого вида животных, но сознательно оставила в них многочисленные пробелы. В программе поведения детеныша архара заложено умение следовать за движущимся предметом, но в ней отсутствуют указания, за кем ему нужно бегать. Это не случайно. Будь программа строго фиксирована во всех деталях, дальнейшая эволюция животных оказалась бы невозможной.

Представьте себе, что у архаров произошли бы удачные мутации, приведшие к изменению общей окраски или отдельных ее деталей, длины шерсти или величины животного. Эти новые качества не имели бы никакого шанса наследоваться, если бы новорожденный архаренок был заранее снабжен портретом своей матери. Такую видоизмененную мать он просто бы не узнал, не стал бы за ней следовать, а значит, потерял бы, отстал и погиб. Следовательно, полезный признак не был бы передан по наследству. Вот чтобы этого не произошло, архаренку и приходится самому учиться узнавать мать. Безусловно, подобные умения должны возникать быстро. В этом случае промедление смерти подобно. И действительно, такие умения возникают, так сказать, с первого взгляда и длятся долго, иногда всю жизнь.

Такой способ обучения ученые называют импринтингом, или запечатлением. Оно происходит в строго определенное время. Только что вылупившийся из яйца утенок признает своей матерью первый увиденный им движущийся предмет и последует за ним независимо от того, будет ли это утка, футбольный мяч, щенок или заводная игрушка. Если ему приходится следовать за движущимся предметом в первые 5–6 часов после выхода из яйца, у него появится заметная привязанность к родной или приемной матери, но она не будет очень прочна. Самое прочное запечатление возникает между 13 и 17 часами. Зато в более зрелом возрасте, у 30-часового утенка, запечатление уже невозможно, и он даже при живых родителях на всю жизнь останется сиротой.

Следование – очень сложная реакция. Детеныш не просто должен бегать за своими родителями, а обязан сопровождать их на вполне определенном расстоянии, чтобы видеть свою мать под нужным углом. Поэтому, если приемной матерью гусенка станет предмет значительно больше гусыни, малыш будет следовать за ним на значительном расстоянии, зато за крохотной родительницей он будет бежать почти вплотную.

В этом отношении очень демонстративен опыт, который провел австрийский зоолог Конрад Лоренц. Он сам стал матерью для гусят. Пока Лоренц разгуливал по саду, малыши следовали за ним на почтительном расстоянии, но стоило ему войти в пруд и начать постепенно погружаться в воду, как гусята приближались к нему, а когда над водой оставалась одна голова, старались забраться на нее.

Примеров, когда упущенное для обучения наиболее благоприятное время калечит всю последующую жизнь животного, можно привести немало. Если ягненок в раннем детстве остался сиротой, то, возмужав, он не сможет присоединиться к стаду, окажется не в состоянии подчиниться его законам, не будет вступать в контакты с себе подобными и никогда не обзаведется семьей, то есть станет бесполезным животным. Австралийские овцеводы хорошо знают об этой особенности и осиротевших ягнят безжалостно убивают.

Другой не менее впечатляющий пример – собака, первое животное, которое приучил человек, самый бескорыстный, самый преданный наш друг. Об этом, видимо, двух мнений быть не может. Недаром М. Горький пишет:

 

Мы знаем – нередко собака

Любимого друга честней…

 

Может, вы думаете, что дружба родилась в процессе тысячелетий общения с людьми? Ничуть не бывало. Своей дружбе с собакой мы в значительной мере обязаны все тому же феномену запечатления. Если щенок вырастет без звукового, зрительного и обонятельного общения с человеком, из него впоследствии может вырасти в лучшем случае лишь хорошо прирученный волк. По-настоящему доверять человеку такая собака уже никогда не будет и нашим другом не станет.

Собака сыграла очень важную роль в становлении человека, которую трудно переоценить, став первым помощником людей. Не будь у собаки этого удивительного свойства, позволяющего ей в раннем детстве устанавливать контакт с себе подобными и животными других видов, трудно представить, на какой срок задержалось бы развитие человеческого общества. Ведь, по меткому выражению известного русского зоолога Модеста Богданова, именно собака вывела человека в люди.

Многие навыки у животных вырабатываются еще более сложным путем и поэтому нередко кажутся нам врожденными. Птицу никто не учит строить гнездо, однако, если птенцов вырастить в клетке с гладкими, хорошо выструганными жердочками, они не смогут потом стать хорошими строителями. Иное дело, если жердочки в клетке будут заменены шероховатыми кривыми сучками и срезанными ветвями деревьев. Прыгая целый день по ним, птицы будут совершенствовать тонкие, хорошо координированные движения ног, что им впоследствии очень поможет при постройке гнезда.

Аналогичные явления происходят при обучении птиц пению. Уменье петь – врожденная реакция, однако, чтобы научиться петь хорошо, птица должна хоть раз слышать голос своих сородичей. Без этого настоящей песни, свойственной ее виду, у птицы, выращенной в одиночку, не разовьется. Заучивание песни, вероятно, тоже является запечатлением.

Некоторые рыбы выводятся из икры, отложенной в пресных водоемах, в реках и соединяющихся с ними озерах, и здесь же проводят свое детство. Став подростками, они спускаются к морю, покидая родные реки, и уплывают иногда за тысячи километров от родных берегов, где нередко проводят долгие годы, чтобы, возмужав, вновь вернуться к родным берегам. Как находят они дорогу в океане, вопрос особый, мало изученный и к данной главе непосредственного отношения не имеющий. Ученым известно только, как узнают рыбы свою родную реку, почему, поднимаясь по ней, они уверенно сворачивают в тот приток, где провели детство, а затем и в ручеек, где некогда вывелись из икры. Оказывается, у каждой реки свой запах. Он, видимо, зависит от растений и животных, в ней обитающих. Из сочетания этих компонентов создается неповторимый букет, характерный только для данной речки. Рыбы могут хранить о нем память годами. Это один из ярких примеров запечатления.

В жизни наших детей тоже есть периоды, в течение которых легче всего вырабатываются важнейшие человеческие навыки. У ученых есть подозрение, что с явлениями импринтинга связаны мозговые механизмы реакции улыбки у грудных детей.

Обучение детей речи возможно только в первые 6 лет жизни. Об этом, видимо, знали еще в древности. Во всяком случае, Геродот рассказывает, что египетский фараон, основатель 26-й династии Псамметих, живший 25 веков назад, решил узнать, какой народ древнее. С этой целью он распорядился отдать на воспитание пастуху двух новорожденных мальчиков простого звания. Пастуху было самым строжайшим образом запрещено говорить в присутствии детей и не допускать к ним посторонних. Дети должны были жить в уединенной хижине, предоставленные самим себе, и только пастух в сопровождении своих коз имел право в строго определенные часы навещать их, чтобы покормить молоком и сделать все прочее, что им понадобится. Весь этот жестокий эксперимент был поставлен Псамметихом, чтобы узнать, на каком языке скажут дети первое слово. Это должно было означать, что данный народ самый древний.

Двадцать веков спустя аналогичный эксперимент, только в более широких масштабах, поставил правитель Индии Джелал-уд-Дин Акбар. У него возник спор со своими придворными о том, на каком языке говорили «первые люди», и он поступил так же, как Псамметих, велев отобрать у матерей 12 только что родившихся детей и поместить их в изолированную башню. Чтобы малютки не погибли, Акбар распорядился приставить к ним немых мамок-кормилиц. В течение 12 лет дети не должны были слышать ни одного слова.

В конце этого периода Акбар решил устроить детям публичное испытание. Для этого в качестве экспертов к нему были приглашены люди, владеющие самыми различными языками: евреи, персы, индусы, арабы, халдеи и многие другие. Однако задуманного результата получить не удалось, дети не умели говорить ни на одном из существующих языков и могли издавать лишь нечленораздельные звуки, а между собой объяснялись с помощью телодвижений.

Трудно судить, лежат ли в основе рассказанной зыше легенды реально происходившие события. Результаты бессердечного эксперимента позволяют предположить, что он действительно проводился. Как бы там ни было, во всех случаях, известных в настоящее время ученым, дети, выросшие без контакта со взрослыми, лишенные в первые годы жизни возможности речевого общения, говорить ни на каком языке не могли. Отсутствие речи у так называемых «тюремных» детей, выросших в условиях строгой изоляции, конечно, ни у кого не вызвало удивления. Уже давным-давно известно, что дети учатся языку у нас, взрослых. Поразительно другое, такие дети и в дальнейшем были не способны овладеть человеческой речью, оставаясь до глубокой старости людьми неполноценными.

Теперь уже точно выяснено, что для развития речи нужны первые 6 лет. Потеря их невосполнима. Если человек в детстве овладел одним языком, он позже может освоить второй и третий, а иногда и несколько десятков языков. Если же важнейшие для развития языка годы оказались потерянными, то дело непоправимо, усилия опытнейших педагогов дадут лишь жалкие результаты.

Талейрану принадлежит получивший широкую известность афоризм, что «язык дан человеку для того, чтобы скрывать свои мысли». Эта шутка, безусловно, содержит известную долю истины, однако в действительности потребность обмениваться мыслями у человека врожденная. Вспомните эксперимент Акбара: дети, прожившие 12 лет в башне, объяснялись между собой с помощью жестов. В этом еще одно доказательство, что в основе легенды лежит вполне реальный факт. Во всяком случае, когда без речевого контакта росли вместе двое или больше детей, они всегда вырабатывали свой собственный индивидуальный язык, который, конечно, не имел ничего общего ни с родным, ни с каким-нибудь еще языком. Обычно это был язык жестов и примитивных звуков.

В одном из наиболее подробно изученных случаев самодельный язык детей состоял из 21 коренного жеста, с помощью комбинаций и видоизменения которых дети могли передавать друг другу практически любую информацию, доступную их возрасту. Интересно, что дети, выработавшие собственный язык жестов, почти не поддаются обучению звуковому языку, пока их не разъединят, то есть пока не лишат возможности общаться между собой привычным для них способом.

Особая важность первых лет жизни ребенка объясняется тем, что в этот период мозг еще продолжает расти. Именно в это время окончательно складываются взаимоотношения между его клетками, и мозг в силу этого обладает наибольшей пластичностью.

Ребенок, общаясь со взрослыми, легко и непринужденно овладевает родным языком. Если в среде, где он растет, говорят на нескольких языках, он овладевает и ими. Если такой возможности ребенок не имел, то ему в школе, а затем и в институте приходится затрачивать годы упорного труда, в результате которого юноша, как правило, так и не овладевает устной речью на иностранном языке.

В настоящее время педагоги хорошо понимают, что с возрастом способность к иностранным языкам быстро и неуклонно падает. Между тем по давно сложившейся традиции изучение языка в школе начинается только с пятого класса.

Перенос обучения иностранному языку в детские сады и ясли еще даже не ставится в повестку дня. Между тем насыщенность школьных программ настоятельно требует разгрузки. Именно обучение иностранным языкам легче всего перенести на дошкольные годы. Можно надеяться, что наша страна, имеющая самую разветвленную сеть дошкольных учреждений, станет первым государством, в котором иностранным языкам будут обучать в наиболее благоприятные для этого годы.

 


Дата добавления: 2019-09-08; просмотров: 223; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!