Мимовільність і ступінь протікання окислювально-відновних реакцій



Як було зазначено вище, у гальванічних елементах протікають мимовільні окислювально-відновні реакції. Іншими словами, будь-яка реакція, за допомогою якої в гальванічному елементі одержують позитивну е.р.с., повинна бути мимовільною. Отже, використовуючи потенціали напівреакцій для обчислення е.р.с. зв'язаної з ними повної окислювально-відновної реакції, можна визначити, чи належна ця реакція протікати мимовільно. При цьому варто користуватися таким правилом: позитивна е.р.с. указує на мимовільний процес, у той час як негативна е.р.с. указує на немимовільний процес.

 

Е.р.с. і зміна вільної енергії

Відомо, що зміна вільної енергії ΔG, яким супроводжується хімічний процес, є мірою мимовільності його протікання. Оскільки е.р.с. електрохімічного елемента, де протікає окислювально-відновна реакція, указує, наскільки вона мимовільна, неважко зрозуміти, що між е.р.с. електрохімічного елемента і зміною вільної енергії реакції, що протікає в ньому, повинно існувати визначене співвідношення.

Таке співвідношення дійсно існує:

ΔG = – nFE (4.1)

У цьому рівнянні Е – е.р.с. електрохімічного елемента, n – число молів електронів, стерпних в окислювально-відновній реакції, a F-постійна, що носить назву число Фарадея (по імені Майкла Фарадея). Число Фарадея являє собою електричний заряд 1 моля електронів, і ця кількість заряду зветься фарадей (Ф):

1Ф = 96 500  = 96 500  (4.2)

У тому випадку, якщо реагенти і продукти знаходяться в стандартних станах, рівняння (4.1) здобуває вид

∆G° = –nFE° (4.3)

 

Е.р.с. і константа рівноваги

Доведено, що стандартна зміна вільної енергії ∆G° зв'язана з константою рівноваги. До рівнянням (4.4):

∆G° = – 2,30• R• T• lgК                                                                                  (4.4)

З цього рівняння випливає, що стандартна е.р.с. окислювально-відновної реакції Е° повинна бути зв'язана з константою рівноваги співвідношенням

–nFE° = – 2,30 R• T• lg К

відкіля                                                                                     (4.5)

Якщо застосувати це рівняння при Т = 298 К и підставити в нього чисельні значення величин R і F, воно спроститься:

                                      (4.6)

Отримані рівняння показують, що стандартна е.р.с. електрохімічного елемента тим більше, чим більше константа рівноваги реакції, що протікає в електрохімічному елементі.

 

Е.р.с. і концентрація

На практиці гальванічні елементи рідко діють при стандартних умовах. Однак е.р.с. елемента, що працює при нестандартних умовах, можна обчислити по Е°, температурі і концентраціям реагентів і продуктів у гальванічному елементі. Рівняння, що дозволяє проводити такі розрахунки, виводиться зі співвідношення між ∆G і ∆G°:

∆G = ∆G° + 2,30 R T lgQ                                                                               (4.7)

Оскільки, відповідно до рівняння (4.1), ∆G = – nFE, можна записати, що

– nFE = – nFE° + 2,30 R T lgQ

Вирішуючи попереднє рівняння відносно Е, знаходимо

  (4.8))

Це співвідношення відоме за назвою рівняння Нернста, по імені Германа Вальтера Нернста (1864-1941), німецького хіміка, що зіграв важливу роль у створенні теоретичних основ електрохімії. При 298 К величина 2,30 RT/F має значення 0,0591 В, що дозволяє записати рівняння Нернста в більш простому виді:

                                                                                           (4.9)

Щоб проілюструвати застосування рівняння (4.9), розглянемо реакцію Zn(тв.) + Cu2+ (водн.)  Zn2+ (водн.) + Cu (тв.)        Е° = 1,10 В

У даному випадку n = 2, і рівняння Нернста дає

                                                                              (4.10)

Нагадаємо, що у вираження для Q входять тільки концентрації іонів у розчині, але воно не включає концентрації твердофазних учасників реакції. Експериментально встановлено, що е.р.с. електрохімічного елемента не залежить від розміру і форми твердих електродів. З рівняння (4.10) випливає, що е.р.с. гальванічного елемента, у якому протікає окислювально-відновна реакція між міддю і цинком, зростає при підвищенні [Cu2+] і зменшенні [Zn2+]. Наприклад, при [Cu2+] = 5,0 і [Zn2+] = 0,050 М маємо

У загальному випадку, якщо концентрації реагентів підвищуються щодо концентрацій продуктів, це приводить до підвищення ступеня мимовільності реакції, що протікає в гальванічному елементі, і зростанню його е.р.с. І навпаки, якщо концентрації продуктів підвищуються в порівнянні з концентрацією реагентів, е.р.с. зменшується. Під час дії електрохімічного елемента відбувається витрата реагентів і утворення продуктів. Зв'язане з цим зменшення концентрацій реагентів і зростання концентрацій продуктів викликає поступове зменшення е.р.с. елемента [1, 7, 8, 11].

 


Дата добавления: 2019-09-02; просмотров: 283; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!