Некоторые термодинамические соотношения



Итак, мы получили соотношения

(27)

(28)

(29)

(30)

Отсюда

  (31)

    (32)

(33)

(34)

Отметим два следствия выведенных уравнений. Из определения функций F и G следует . Подставив сюда выражения для энтропии из формул (33) и (34), получим

(35)

(36)

Эти уравнения называются уравнениями Гиббса — Гельмгольца. Сразу можно отметить пользу, которую можно извлечь из этих уравнений. Часто бывает легко найти свободную энергию F с точностью до слагаемого, зависящего только от температуры. Это можно сде­лать, вычислив изотермическую работу, совершаемую системой. Тогда формула (35) позволяет с той же неопределенностью найти и внутреннюю энергию системы.

Если известна функция , то дифференцированием ее по S и V можно найти температуру и давление системы, т. е. полу­чить полные сведения о ее термических свойствах. Затем по фор­муле  можно найти  и соответствующие теплоемкости, т. е. получить полные сведения также и о калорических свойствах системы. То же самое можно сделать с помощью любого из оставших­ся трех канонических уравнений состояния.

Далее, вторичным дифференцированием из соотношений (31) находим

Отсюда на основании известной теоремы анализа о перемене порядка дифференцирования следует

(37)

Аналогично,

      (38)

      (39)

    (40)

Эти и подобные им соотношения называются соотношениями вза­имности или соотношениями Максвелла. Они постоянно исполь­зуются для вывода различных соотношений между величинами, характеризующими термодинамически равновесные состояния си­стемы. Такой метод вывода называется методом термодинами­ческих функций или термодинамических потенциалов.

Общие критерии термодинамической устойчивости

Допустим, что адиабатически изолированная система находится в термодинамическом равновесии, причем ее энтропия S в рассматри­ваемом состоянии максимальна, т. е. больше энтропий всех возможных бесконечно близких состояний, в которые система может перей­ти без подвода или отвода тепла. Тогда можно утверждать, что самопроизвольный адиабатический переход системы во все эти со­стояния невозможен, т. е. система находится в устойчивом термодинамическом равновесии. Действительно, если бы такой переход был возможен, то энтропии начального 1 и конечного 2 состояний были бы связаны соотношением . Но это соотношение находится в противоречии с принципом возрастания энтропии, согласно которому при адиабатических переходах должно быть . Таким образом, мы приходим к следующему критерию термодина­мической устойчивости.

Если система адиабатически изолирована и ее энтропия в не­котором равновесном состоянии максимальна, то это состояние являемся термодинамически устойчивым. Это значит, что система, оставаясь адиабатически изолированной, не может самопроизвольно перейти ни в какое другое состояние.

В приложениях термодинамики к конкретным вопросам часто бывает удобно вместо адиабатической изоляции системы накладывать на ее поведение другие ограничения. Тогда критерии термодинамической устойчивости изменятся. Особенно удобны следующие критерии.

Критерий устойчивости для системы с постоянными объемом и энтропией.  

Принимая во внимание соотношение (4) и первое начало термодинамики, можно написать:

       (41)

При постоянстве энтропии и объема это дает

     (42)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением внутренней энергии. Следовательно, устойчивым является состояние при минимуме внутренней энергии.

       Критерий устойчивости для системы с постоянными давлением и энтропией. В этом случае условие (41) имеет вид

    (43)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением энтальпии  Следовательно, устойчивым является состояние при минимуме энтальпии.

       Критерий устойчивости для системы с постоянными объемом и температурой. При  и  неравенство (41) записывается в виде

                   (44)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением свободной энергии  Следовательно, устойчивым является лишь состояние при минимуме свободной энергии.

       Критерий устойчивости для системы с постоянными температурой и давлением. С помощью выражения (17) для термодинамического потенциала неравенство (41) преобразуется к виду

        (45)

       При постоянных температуре и давлении дифференциалы  и (45) сводятся к неравенству

     (46)

т.е. в системе могут самопроизвольно происходить лишь процессы с уменьшением термодинамического потенциала. Следовательно, устойчивым является состояние при минимуме термодинамического потенциала Гиббса.

Принцип Ле-Шателье – Брауна

Рассмотрим принцип, сформули­рованный французским ученым Ле-Шателье (1850—1936) в 1884 г. и, в расширенном виде, немецким физиком Брауном (185О—1918) в 1887 г. Этот принцип позволяет предвидеть направление течения процесса в системе, когда она выведена внешним воздействием из состояния устойчивого равновесия. Принцип Ле-Шателье — Брауна не является столь всеобъемлющим, как второе начало термодинамики. В частности, он не позволяет высказывать никаких коли­чественных заключений о поведении системы. Необходимым усло­вием применимости принципа Ле-Шателье — Брауна является наличие устойчивости равновесия, из которого система выводится внешним воздействием. Он неприменим к процессам, переводящим систему в более устойчивое состояние, например, к взрывам. Прин­цип Ле-Шателье — Брауна был сформулирован как обобщение зна­менитого и всем хорошо известного электродинамического правила ленца (1804—1865), определяющего направление индукционного тока. Он гласит:

Если система находимся в устойчивом равновесии, то всякий про­цесс, вызванный в ней внешним воздействием или другим первичным процессом, всегда бывает направлен таким образом, что он стремится уничтожишь изменения, произведенные внешним воздействием или первичным процессом.

Ле-Шателье и Браун применяли главным образом индуктивный метод, рассмотрев большое число примеров, которые, по их мнению, являются частными случаями сформулированного ими общего прави­ла. Данная ими формулировка была, однако, столь туманной, что не допускала в каждом конкретном случае однозначного применения правила. Неопределенность можно устранить и получить точные математические формулы, выражающие принцип Ле-Шателье —Брауна, если к рассматриваемой проблеме привлечь критерии устойчивости термодинамического равновесия, сформулированные в предыдущем параграфе.

 

 

Список использованной литературы

1. И.В. Савельев. Курс общей физики. книга 3. М.: Физматлит, 1998

2. Д.В. Сивухин. Общий курс физики. т.II. М.: Наука, 1975

3. А. К. Кикоин, И.К.Кикоин. Молекулярная физика. М.: Наука, 1976

4. А.Н. Матвеев. Молекулярная физика. М.: Высшая школа, 1981


Дата добавления: 2019-07-15; просмотров: 190; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!