Выпрямительные низкочастотные диоды в блоках питания



1.5.1. Блоки питания на выпрямительных диодах

Источниками питания называются устройства, предназначенные для снабжения электронной аппаратуры электрической энергией и представляющие собой комплекс приборов, которые вырабатывают электрическую энергию и преобразуют ее к виду, необходимому для нормальной работы каждого узла электронной аппаратуры (рис. 1.9).

 

Рис. 1.9. Общая структурная схема источника питания

Основными звеньями выпрямительного устройства являются трансформатор и вентильный комплект; вспомогательными - фильтр и стабилизатор постоянного напряжения.

Трансформатор служит для преобразования переменного напряжения в переменное такого значения, которое необходимо для получения на выходе источника питания заданного постоянного напряжения.

Вентиль - это прибор, имеющий несимметричную характеристику проводимости, малое сопротивление для прямого тока и большое сопротивление для обратного. С помощью вентиля переменное напряжение преобразуется в пульсирующее.

Фильтр предназначен для сглаживания пульсаций выпрямленного напряжения.

Стабилизатор - это схема, которая отслеживает все изменения напряжения со стороны входа и выхода и поддерживает постоянным напряжение на нагрузке.

В настоящее время в электронных устройствах наиболее часто исполь- зуются следующие схемы выпрямителей:

однофазные (однополупериодные (ОПВ - рис. 1.10, а), двухполупериодные (ДПВ с нулевым выводом и мостовая - рис. 1.10, б, в соответственно);

многофазные (с нулевым выводом, мостовые - схема Ларионова).

 

1.5.2. Параметры выпрямителей с любым характером нагрузки

Характер нагрузки на выходе выпрямителя определяется или самой нагрузкой, или первым элементом фильтра (фильтр может быть любой сложности).

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).

 

 


Параметры выпрямительных устройств:

1. Действующее значение напряжения на вторичной обмотке трансформатора U2.

2. Амплитудное значение напряжения на вторичной обмотке трансформатора U2 мах.

3. Среднее значение выпрямленного напряжения на нагрузке U 0.

4. Среднее значение выпрямленного тока в нагрузке I0 .

5. Действующее значение напряжения пульсаций на нагрузке U п.

6. Максимальные изменения напряжения на нагрузке DU вых.

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).

8. Коэффициент сглаживания Кс (это параметр фильтра).

9. Коэффициент полезного действия выпрямителя h.

10. Амплитудное значение тока через диод.

11. Обратное напряжение на диоде - наибольшая разность потенциалов, приложенная к диоду в тот момент времени, когда он не пропускает тока.

Во всех схемах выпрямителей активный характер нагрузки, то есть

сглаживающие фильтры отсутствуют.

 

1.5.4. Выпрямительные устройства

с простым емкостным фильтром на выходе

1.5.4.1. Анализ работы схемы и основные соотношения в ней

 

Назначение конденсатора на выходе выпрямителя - сглаживать пульсацию в выпрямленном напряжении. При подключении конденсатора фильтра характер нагрузки становится емкостным.

Наличие конденсатора в схеме выпрямителя (рис.1.12, а) существенно меняет режим работы полупроводниковых диодов: напряжение на конденсаторе (рис. 1.12, б) в определенный момент времени делает потенциал катода диода больше потенциала анода и диоды запираются (моменты времени t2 и t4). С момента времени с t2 по t3 диоды заперты и находятся под обратным напряжением, а с t1 по t2 и с t3 по t4 диоды открыты. При наличии
С-фильтра диод переходит в режим прерывистого тока, следовательно, режим диода в прямом направлении становится более напряженным, особенно в момент включения, когда конденсатор еще не заряжен: за короткий промежуток времени (с t3 по t4) ток через диод должен успеть достичь максимального значения и уменьшиться до нуля.

Емкость конденсатора фильтра выбирается из условия, чтобы ее сопротивление по переменной составляющей тока было значительно меньше сопротивления нагрузки (хотя бы в 5–10 раз).

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,

 

 
                                         а)                                                         б)

 


Рис. 1.12. ДВП с простым С-фильторм: а - схема ДПВ, б - временная диаграмма напряжения на нагрузке Uн = f(t)

 

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,

 

Заряд, который конденсатор теряет за время t2 - t3, t4...,

Отрезок времени, на котором происходит разряд конденсатора, оказывается близким к половине периода входного напряжения выпрямителя.

 

По условию стационарности процесса заряда и разряда (= )

=

откуда

                                                                      (1.19)

где t р = R н С - постоянная времени разряда конденсатора фильтра.

Постоянная составляющая выходного напряжения легко может быть определена из временной диаграммы выходного напряжения (рис. 1.12, б)

 

Окончательно среднее значение выпрямленного напряжения

                                                                               (1.20)

В рассматриваемой схеме действующее значение выходного
напряжения

         (1.21)

Из выражения (1.17) определяется действующее значение напряжения пульсаций на выходе простого емкостного фильтра

                                                                           (1.22)

Подставив (1.20) и (1.22) в формулу (1.11) получим выражение для коэффициента пульсаций на выходе фильтра

                                                        (1.23)

 

1.5.6. Выпрямительные устройства, работающие на фильтры,

содержащие индуктивность

Анализ работы выпрямителя с фильтрами на выходе будет ориентирован на мостовую схему выпрямителя (схему Греца).

 

1.5.6.1. Простой сглаживающий L-фильтр

Сглаживающий фильтр с индуктивностью может быть простым, то есть состоящим только из индуктивности (рис. 1.13). Его фильтрующие свойства основываются на способности индуктивности препятствовать любому изменению тока, проходящего через нее. При возрастании тока в индуктивности происходит накопление магнитной энергии, а когда ток уменьшается, энергия, накопленная в индуктивности, поддерживает этот ток, так как ЭДС на дросселе меняет свой знак. Простые индуктивные фильтры рекомендуется использовать только в двухполупериодных и многофазных схемах выпрямителей, так как в них, в отличие от однополупериодных выпрямителей, не возникает таких резких изменений токов, а следовательно, не образуется таких больших ЭДС самоиндукции.

При анализе фильтра в таком источнике питания рассматривается делитель из L и R н, на который подается напряжение с выхода мостовой схемы выпрямителя. Общее сопротивление делителя

                                                                                               (1.24)

где - сопротивление нагрузки, Ом.

Рис. 1.13. Простой индуктивный фильтр

Напряжение на входе фильтра можно представить с помощью ряда
Фурье:

 

где - среднее значение выпрямленного напряжения (постоянная составляющая напряжения на входе фильтра U о); - первая гармоника в выпрямленном напряжении, имеющая частоту, равную удвоенной частоте
сети.

Это напряжение содержит постоянную и ряд гармонических составляющих, но, в отличие от однополупериодного выпрямителя, здесь первой гармоникой будет гармоника с удвоенной частотой сети. В рассматриваемой схеме всеми гармониками после первой можно пренебречь, так как амплитуда второй гармоники составляет всего 20 % от первой, а амплитуда третьей - 8,6 %. Следовательно, можно принять, что на входе


фильтра действует напряжение, которое содержит лишь две составляющие:

 

Амплитуда переменного напряжения на входе простого индуктивного
фильтра

                                 .                           (1.25)

Амплитуда переменного напряжения на нагрузке (на выходе простого индуктивного фильтра) определяется по закону Ома

                (1.26)

Действующее значение напряжения пульсаций на нагрузке (на выходе простого индуктивного фильтра)

                                                                (1.26а)       

 

 

Коэффициент сглаживания простого индуктивного фильтра

                                             (1.27)

Среднее значение выпрямленного напряжения(потерями постоянного напряжения на сопротивлении дросселя можно пренебречь)

                                                                           (1.28)

Среднее значение выпрямленного напряжения получилось гораздо меньше, чем при емкостном фильтре, и чтобы получить при этом необходимое напряжение на нагрузке, приходится увеличивать напряжение на вторичной обмотке трансформатора, что приведет к увеличению обратного напряжения на диодах и к увеличению габаритов блока питания в целом, поэтому выходное напряжение рекомендуется увеличивать введением в индуктивный фильтр конденсатора. Такой фильтр называют Г-образным индуктивно-емкостным LC -фильтром.

 

1.5.6.2. Г-образный индуктивно-емкостный LC-фильтр

 

Сопротивление дросселя для переменных составляющих тока соединяется с нагрузкой последовательно, а конденсатор параллельно (рис. 1.14), и, если выполняется условие Хс << R н << Х L, то напряжение пульсаций на нагрузке будет малым.

 

Рис. 1.14. Г-образный индуктивно - емкостный LC -фильтр

 

Амплитуда основной гармоники переменного тока через дроссель

                                .                         (1.29)

Амплитуда переменного напряжения на выходе фильтра

                                                                      (1.30)

Коэффициент сглаживания фильтра, равный отношению коэффициента пульсации на входе к коэффициенту пульсаций на выходе,

                        (1.31)

При совместной работе индуктивности и емкости в схеме фильтра проявляются свойства контура, в результате чего в схеме может возникнуть колебательный процесс. Чтобы избежать этого, необходимо обеспечить равенство амплитуды переменной составляющей тока  и постоянной составляющей , поэтому введено понятие критической индуктивности, значение которой определяется из следующих соображений.

Так как

                                                           (1.32)

 

а с учетом того, что ХL >> XC, амплитудное значение тока

                                                                  (1.33)

то условием для определения критического значения индуктивности дросселя будет

 

из которого следует

                                                                             (1.34)

Примечание. С достаточной для практики точностью при питании выпрямителя от сети с частотой 50 Гц значение критической индуктивности дросселя можно принять равной

                                                                        (1.35)

Для лучшего сглаживания пульсаций выпрямленного напряжения на выходе выпрямителя применяют П-образные LC-фильтры.

 

1.5.6.3. П-образный индуктивно-емкостный LC-фильтр

 

Такой фильтр (рис. 1.22) можно рассматривать как два фильтра:

1. Простой емкостный фильтр, состоящий из конденсатора С1.

 

2. Г-образный индуктивно-емкостный фильтр (из дросселя L и конденсатора С2).

 

 

 

Рис. 1.15. П-образный индуктивно-емкостный LC -фильтр

 

Действующее значение напряжения пульсаций на выходе П-образного
фильтра

                             ,                    (1.36)

где -действующее значение напряжения пульсаций на входе фильтра П-образного индуктивно-емкостного фильтра.

В источниках малой мощности для уменьшения размеров и массы фильтра вместо дросселя применяют резистор. Резистивно-емкостные фильтры рассчитывают и строят по тем же схемам, что и индуктивно-емкостные (Г- и П-образные фильтры), но необходимо принять к сведению, что на RC-фильтрах происходит значительное падение постоянного напряжения (до 20 %).

Теоретическое обобщение по выпрямителям, работающим на фильтры, содержащие индуктивность

Г- и П-образные сглаживающие LC-фильтры позволяют получить пульсации выходного напряжения гораздо меньшие, чем при простых индуктивных или простых емкостных фильтрах. Если требования к сглаживанию пульсации окажутся еще выше, то рекомендуется использование многозвенных фильтров (рис. 1.17).

 

Рис. 1.17. Каскадное включение LC -фильтров

 

Коэффициент сглаживания таких фильтров определяется как произведение коэффициентов сглаживания отдельных звеньев

 

Туннельные диоды

Основные полупроводниковые материалы, из которых изготавливаются туннельные диоды, - германий и арсенид галлия.

 

 Рис. 1.18. Схемное изображение туннельного диода

 

Особенности туннельных диодов:

1. Высокая концентрация примесных атомов (1019–1021).

2. Вольт-амперная характеристика туннельного диода содержит участок с отрицательным динамическим сопротивлением («аб» на рис. 1.28), что позволило использовать его в усилителях и генераторах электрических колебаний и в импульсных устройствах. При этом качество работы диода определяет протяженность и крутизна падающего участка ВАХ.

3. У туннельного диода обратный ток достигает большой величины при малом обратном напряжении.

4. Важное преимущество туннельного диода перед обычным заключается в его очень высокой рабочей частоте. Это объясняется тем, что туннельный переход электронов происходит почти мгновенно (за
время 10-13сек.). Частотные свойства туннельного диода на падающем участке ВАХ определяются параметрами его схемы замещения (рис. 1.19, б).

 

 

 

 
а)                                                             б)

 


Рис. 1.19. ВАХ туннельного диода и его эквивалентная схема : а - вольтамперная характеристика диода; б - схема замещения туннельного диода

Активная составляющая полного сопротивления сохраняет отрицательный знак вплоть до частоты

,

где: fr - это такая предельная резистивная (расчетная) частота, при которой активная составляющая полного сопротивления последовательной цепи, состоящей из p-n-перехода и сопротивления потерь, превращается в нуль.

Принятые обозначения в схеме: rдиф - дифференциальное сопротивление туннельного диода; Сд и Lд - емкость и индуктивность диода; Rп- суммарное сопротивление кристалла, контактных присоединений и выводов.

Усиление и генерирование колебаний возможно на частотах, не превышающих fr .

5. Температурный диапазон у туннельных диодов значительно шире, чем у обычных диодов: при туннельном переходе электрон не затрачивает тепловой энергии, поэтому туннельный диод может работать при такой низкой температуре, при которой обычные диоды и транзисторы перестают работать (фактически туннельный диод способен работать при температурах вплоть до -269 оС, но устойчивая работа диода гарантируется в диапазоне температур от -60 оС до +150 оС),. Максимальная температура у туннельных диодов из германия равна +200 оС, а из арсенида галлия -
до +400 оС.

6. Туннельные диоды не восприимчивы к высокой влажности, устойчивы к ядерной радиации (допускается облучение плотностью 1014 -1016 нейтрон/см2).

7. У туннельного диода хорошие шумовые характеристики.

1.7. Опорные диоды (кремниевые стабилитроны)

 

Рис. 1.24. Схемное изображение опорного диода.

1.7.1. Краткие теоретические сведения

 

Опорными диодами называются полупроводниковые диоды, вольт-амперная характеристика которых имеет участок со слабой зависимостью напряжения от тока (Рис. 1.25). Название «опорных» они получили за счет способности фиксировать уровни напряжений в схемах. В основу работы опорных диодов положено явление холодной эмиссии и управляемый электрический пробой в p-n-переходе. Концентрация примесных атомов в стаби

 

литроне гораздо выше, чем в обычных диодах, поэтому стабилитрон находится как бы в предпробойном состоянии.

 

Рис. 1.25. ВАХ кремниевого стабилитрона

 

Назначение стабилитронов - стабилизация напряжения; у современных стабилитронов напряжение стабилизации доходит до нескольких сотен вольт, а ток - до десятков ампер, при этом дрейф напряжения может быть не
более 0,1 В.

Конструкция стабилитронов та же, что и у выпрямительных диодов; у тех и у других выбор корпуса связан с мощностью рассеяния.

Ветвь характеристики прямосмещенного стабилитрона показывает, что он способен стабилизировать напряжение и в таком состоянии, но уровень стабилизируемого напряжения гораздо меньше, чем при обратносмещенном состоянии диода.

Участок "аб" - для стабилизации напряжения: большим изменениям тока (от I ст.мин . до I ст.мах) соответствуют незначительные изменения напряжения (Uст).

Максимальный ток I ст.мах ограничивается допустимой мощностью рассеяния, а минимальный (I ст.мин) соответствует началу устойчивого электрического пробоя. При меньших значениях тока стабилитрона он может служить источником шумов (используется в генераторах шумов).

В пределах "аб" сопротивление стабилитрона изменяется при изменении тока через него, а напряжение при этом остается почти постоянным. После точки "б" стабилитрон переходит в режим теплового пробоя, при этом в нем идут необратимые процессы и структура диода разрушается. В режиме теплового пробоя стабилитрон имеет участок на ВАХ с отрицательным динамическим сопротивлением.

Схема включения стабилитрона приведена в задаче (рис. 1.26). Качество стабилизации напряжения схемой стабилизатора оценивается коэффициентом стабилизации Кст, который показывает во сколько раз относительные изменения входного напряжения больше относительных изменений напряжения на выходе

 

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Общие сведения

Биполярный транзистор представляет собой сочетание чередующихся трех областей (n - p-n или p-n-p) и двух p-n-переходов (рис. 2.1, рис. 2.2 соответственно).

Эмиттер - область, сильно легированная носителями, из этой области носители должны быть инжектированы в соседнюю область - базу.

База - область в поперечном сечении, гораздо меньшая, чем две другие и, кроме того, очень слабо легированная носителями.

Коллектор - область, куда должны быть втянуты носители из базы, впрыснутые туда из эмиттера (явление экстракции). Коллектор легируется носителями гораздо слабее, чем эмиттер.

Переход между базой и эмиттером называется эмиттерным (ЭП), а между базой и коллектором - коллекторным (КП). Каждый из переходов может быть включен либо в прямом, либо в обратном направлении, то есть переходы равноправны и режим работы транзистора будет зависеть от способа его включения. В соответствии с этим различают четыре способа включенияили четыре режима работы транзистора.

 

 

Рис. 2.1. Структура и схемное изображение транзистора n-p-n- типа

 

 

 

Рис. 2.2. Структура и схемное изображение транзистора p-n-p- типа

 

2.2. Способы включения биполярного транзистора

1. Активный (или режим усиления, рис. 2.3, а) - нормальное включение, при котором на эмиттерный переход подается прямое напряжение, а на коллекторный - обратное. В активном режиме коэффициент передачи тока эмиттера . В таком режиме работают линейные усилители.

2. Инверсный (рис. 2.3, б). На эмиттерный переход подается обратное напряжение, а на коллекторный - прямое. В этом режиме коэффициент передачи тока коллектора заметно меньше коэффициента передачи тока эмиттера при нормальном включении

3. Режим насыщения (рис. 2.3, в). На обоих переходах действуют прямые напряжения, и таким образом транзистор работает в режиме двойной инжекции (в базу поступают носители и из эмиттера, и из коллектора).

4. Режим отсечки (рис. 2.3, г). На обоих переходах действуют обратные напряжения, транзистор заперт и через переходы текут лишь токи неосновных носителей.

 

 

           

 

 

     
 
 в)                                                                     г)

 

 


Рис. 2.3. Способы включения транзистора: а - нормальное; б - инверсное; в - двойной инжекции; г - отсечки

 Режимы насыщения и отсечки используются в ключевом режиме.

Наиболее распространенным является активный режим (рис. 2.3, а), когда на эмиттерный переход подается прямое, а на коллекторный - обратное напряжения. При этом через переходы текут примерно одинаковые токи, но эмиттерный ток течет через прямосмещенный переход с малым сопротивлением и под действием малого напряжения (доли вольта), а коллекторный ток - через обратносмещенный переход с большим сопротивлением и под действием большого напряжения (десятки, сотни вольт). Этот факт и создает принципиальную возможность использования транзистора в качестве усилителя электрических колебаний (преобразователя мощности). Разделение электронных усилителей на усилители напряжения, тока, мощности чисто условное и это связано с тем, что в ряде случаев основными показателями служат не входная и выходная мощности, а ток или напряжение на входе и выходе усилителя.

 


Дата добавления: 2019-07-15; просмотров: 338; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!