Переходные колебания в цепи с индуктивностью



Академия России

Кафедра Физики

 

ПЕРЕХОДНЫЕ И СВОБОДНЫЕ КОЛЕБАНИЯ В ЦЕПЯХ С ОДНИМ РЕАКТИВНЫМ ЭЛЕМЕНТОМ ПРИ СТУПЕНЧАТОМ ВОЗДЕЙСТВИИ

 

 

 

Орел 2009


Содержание

 

Вступление

Переходные колебания в цепи с емкостью

Переходные колебания в цепи с индуктивностью

Методика нахождения реакций

Свободные колебания в электрической цепи

Библиографический список


ВСТУПЛЕНИЕ

 

В данной лекции будет показан принцип применения операторного метода для анализа переходных колебаний в электрических цепях, содержащих один реактивный элемент и резисторы.

Будем считать, что на электрическую цепь, содержащую один реактивный элемент и резисторы, в момент действует ступенчатое воздействие в виде перепада постоянного тока или постоянного напряжения, условное обозначение которых показано на рисунке 1. Цепь находится при нулевых начальных условиях (НУ).

 

Рис. 1

 

В результате изучения материала курсанты должны уметь находить математическое выражение и строить график любой реакции на ступенчатое воздействие в цепях, содержащих один реактивный элемент и один или несколько резисторов.

 

Переходные колебания в цепи с емкостью

 

Рассмотрим воздействие перепада напряжения на последовательную RC-цепь. Пусть на последовательную RC-цепь, находящуюся при нулевых НУ в момент воздействует перепад напряжения (рис. 2).


Рис. 2

 

Найдем законы изменения тока в цепи  и напряжений на ее элементах  и .

На основании 2 закона коммутации: .

Для анализа переходного процесса используем операторный метод, для чего перейдем к операторной схеме замещения RC-цепи (рис. 3)

Рис. 3

 

Изображение тока в цепи определяется по закону Ома в операторной форме:

.

По таблице соответствий найдем оригинал:

,

где  есть постоянная времени цепи.

Постоянная времени τ - промежуток времени, в течение которого напряжение (ток), убывая по экспоненциальному закону, уменьшается в е раз по отношению к значению напряжения (тока) в начале анализируемого промежутка времени. Она зависит от параметров цепи и влияет на крутизну экспоненты.

Напряжение на резисторе определяется по закону Ома для оригинала:

.

Закон изменения напряжения на емкости проще всего найти по 2‑ому закону Кирхгофа для оригиналов:

.

Отметим, что при , , т. е. в момент перепада напряжения конденсатор представляет собой КЗ.

Графики данных функций описываются экспоненциальным законом и отличаются лишь начальным значением реакций. Их можно построить, составив таблицу значений  для  и  для :

 

0
1 0,368 0,135 0,05 0,01 <0,01
0 0,632 0,865 0,95 0,99 >0,99

 

 На рисунке 4 показаны графики  и  и их деформация при изменении  цепи.

 

Рис. 4

 

Постоянную времени цепи τ можно определить по следующему отношению величин, взятых из графика (рис. 4).

.

Постоянная времени τ зависит от параметров цепи (R и С) и влияет на крутизну экспоненты (рис. 4):

- при уменьшении τ экспонента проходит круче и процесс переходных колебаний ускоряется;

- при увеличении τ, наоборот, экспонента проходит положе и процесс переходных колебаний замедляется.

Из графика видно, что теоретически переходные колебания в RC-цепи продолжаются бесконечно долго: f(t) → 0 (Е) при t → ∞.

Если рассмотреть промежуток времени t = 3τ, то окажется, что значение исходной функции уменьшается до 0,05 (увеличивается до 0,95) от начального значения, а при t = 4,6τ значение функции будет составлять всего 0,01 (0,99) от первоначального. Принято считать промежуток времени от t = 0 до t = (3 4,6)τ длительностью процесса переходных колебаний или временем установления.

Таким образом, tУСТ = (3 4,6)τ.

Примечание: постоянная времени сложной цепи определяется по той же формуле τ = RC, где R = RЭКВ – эквивалентное сопротивление, подключенное к элементу емкости после совершения коммутации, т. е. при t = +0. Это сопротивление находится, как в обычной резистивной цепи.

Соответствующая операторная схема показана на рисунке 6.

 

Рис. 6

Воспользуемся методом контурных токов:

;

;

.

Далее находим остальные реакции по первому закону Кирхгофа:

.

Графики этих реакций, при , будут иметь вид (рис. 7):

 

Рис. 7

 

Напряжения на резисторах легко определяются путем умножения токов и на соответствующие сопротивления, а напряжение на емкости можно найти по второму закону Кирхгофа:

.

График данной функции имеет такой же вид, как и на рисунке 4.

Выводы:

1. Временные зависимости всех реакций определяются экспоненциальной функцией.

2. Переходные процессы теоретически длятся бесконечно долго, однако на практике их считают законченными за время , которое называют временем установления. Изменяя постоянную времени цепи  можно менять длительность переходного процесса.

3. С физической точки зрения все графики объясняются процессом заряда емкости при ступенчатом воздействии.

Переходные колебания в цепи с индуктивностью

 

Анализ переходных колебаний в цепи с индуктивностью при воздействии перепада напряжений выполняется аналогично рассмотренному выше. Найдем реакции в последовательной цепи , показанной на рисунке 8.

 

Рис. 8


,

где  — постоянная времени цепи .

Отметим, что при  – , а , т. е. при перепаде напряжения индуктивность эквивалентна обрыву цепи, а при  эквивалентна КЗ.

Графики временной зависимости напряжений приведены на рисунке 9.

 

Рис. 9

 

Изменяя величину , можно регулировать длительность переходного процесса.

Аналогично можно рассмотреть переходные процессы в параллельной -цепи при воздействии на нее перепада тока и изобразить графики временной зависимости токов в ветвях ,  и напряжения .


Дата добавления: 2019-07-15; просмотров: 119; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!