Исследование выпрямительного и туннельного диодов



 

Цель работы

 

Изучение характеристик и параметров выпрямительных и туннельных диодов.

 

Теоретическая часть

 

1. Формирование электронно-дырочного перехода.

Плоскостные выпрямительные диоды основаны на плоскостном контакте слоев полупроводников с разным типом проводимости. Структура полупроводников n- и р-типа приведена на рис.1, где n-слой с электронной проводимостью, а p-слой с дырочной проводимостью.

 

Рис.1. Структура полупроводников с электронной и дырочной проводимостью

 

При соединении слоев происходит диффузия электронов из n-слоя в p-слой. Принимается условие, что концентрация электронов в n-слое больше концентрации дырок в p-слое. После диффузии электронов у границы n-слоя остается неподвижный положительный заряд ионов примеси (донора). В p-слое электроны рекомбинируют с дырками, в результате чего у границы p-слоя возникает неподвижный отрицательный заряд ионов примеси (акцептора). Область неподвижных зарядов ионов примеси в основном составляет p-n-переход (рис.2).      

Переход получается в единой пластине полупроводника, в которой получена резкая граница между слоями n и р. Резкость границы играет основную роль для образования p-n-перехода, т.к. плавный переход не обладает вентильными свойствами, на которых основана работа диодов и транзисторов.

Граница между слоями является резкой, если выполняется неравенство:

,                                (1)

где  – градиент концентрации примеси на границе перехода,

li – глубина проникновения электрического поля в кристалл,

ni – собственная концентрация электронов.

Например, для значений ni = 1013 зар/см3 и li = 1,5 мкм условие (1) выполняется при  зар/см4. Согласно условию (1) концентрация примеси в переходе должна существенно изменяться на отрезке, меньшем li. Переходы, в которых наблюдается скачкообразное изменение концентрации на границе слоев , называются ступенчатыми. Ступенчатые переходы хорошо воспроизводят параметры и характеристики реальных структур и проще для анализа.

 

Рис.2. Структура несимметричного ступенчатого p-n-перехода и потенциальный барьер p-n-перехода

По соотношению концентраций основных носителей в слоях n и р переходы делятся на симметричные и несимметричные: nn@pp и nn>>pp или pp>>nn, где nn – концентрация электронов в области n, pp – концентрация дырок в области р. Практическое применение находят несимметричные переходы, у которых различие в концентрациях составляет до 100 – 1000 раз.

Заряды p-n-перехода образуются не только за счет ионов примесей, но и за счет некоторого числа носителей, поступивших из соседнего слоя. Количество свободных носителей невелико. В рассматриваемом случае концентрация доноров значительно выше концентрации акцепторов, в то же время полные заряды в обеих частях перехода одинаковы, поэтому область отрицательного заряда в р-слое будет гораздо шире, чем область положительного заряда в n-слое. Следовательно, несимметричный переход сосредоточен в основном в высокоомном слое.

Заряды p-n-перехода создают внутреннее поле, которое препятствует перемещению основных носителей 1 и 2. Под действием внутреннего поля перемещаются неосновные носители 3 и 4, которые создают ток дрейфа. Внутреннее поле создает на границе слоев потенциальный барьер, который принято изображать для электронов. Для перехода электрона 1 из n-слоя в p-слой электрону необходимо сообщить потенциал jpn, который для кремниевых p-n-переходов составляет величину 0,6–0,7 В, а для германиевых – 0,2–0,3 В. При отсутствии внешнего напряжения через переход протекают токи диффузии и дрейфа, которые равны по величине. Ширина p-n-перехода зависит от материала полупроводника, концентрации электронов и дырок, температуры.

2. Подключение p-n-перехода к внешнему напряжению.

Подключение внешнего напряжения позволяет изменить ширину p-n-перехода и высоту потенциального барьера. Различают прямое и обратное включение p-n-перехода. Схема прямого включения приведена на рис.3. Источник Епр действует встречно внутреннему полю, поэтому уменьшаются ширина p-n-перехода и высота потенциального барьера. Основные носители электроны получают возможность для диффузии из n-слоя в p-слой.

 

Рис.3. Прямое включение p-n-перехода

 

Пусть электроны 1, 2, 3 совершают диффузию в p-слой, который на мгновение теряет электрическую нейтральность, приобретая избыточный отрицательный заряд. Между p-слоем и его выводом возникает электрическое поле, которое выбрасывает во внешнюю цепь электроны 4, 5, 6 из ближайших орбит парно-электронных связей полупроводника p-типа. Далее электроны 1¢, 2¢, 3¢ начинают диффузионное перемещение по дыркам вправо к правому контакту.

Во время диффузии электронов 1, 2, 3 n-слой также теряет электрическую нейтральность, приобретая избыточный положительный заряд. Между n-слоем и его выводом возникает электрическое поле, которое втягивает из внешней цепи электроны 7, 8, 9. В результате у левого и правого контакта, а также через структуру протекает прямой ток. Величина прямого тока определяется площадью p-n-перехода и зависит от приложенного прямого напряжения и ограничивающего сопротивления.

 

Рис.4. Обратное включение p-n-перехода

Схема обратного включения p-n-перехода приведена на рис.4. Под действием обратного напряжения происходит отток основных носителей 1 и 2 от границ перехода, поэтому p-n-переход расширяется. Для основных носителей создается сильное тормозящее поле, поэтому диффузия носителей невозможна. Поле, действующее на переходе, является ускоряющим для неосновных носителей, поэтому происходит дрейф носителей. Ток дрейфа имеет три составляющие: ток термогенерации, тепловой ток, ток утечки.

Ток термогенерации создается неосновными носителями 5 и 6, которые генерированы в области перехода, и зависит от температуры Iтг(Т) = Iтг0)×еaDТ, где Т0 – начальное значение температуры (250С); Т – текущее значение температуры; DТ – изменение температуры; a – температурный коэффициент. Ток термогенерации преобладает у кремниевых диодов, которые имеют бóльшую ширину p-n-перехода по сравнению с германиевыми диодами.

Тепловой ток создается неосновными носителями 3 и 4, которые генерированы в слоях полупроводника, прилегающих к переходу. Тепловой ток преобладает у германиевых p-n-переходов. Он зависит от температуры Iт(Т) = Iт0)×еaDТ. Существует эмпирическое правило для оценки токов, зависящих от температуры: при возрастании температуры на 100С обратный ток возрастает в 2 раза.

Ток утечки создается неосновными носителями, которые генерируются на поверхности слоев. Этот ток не зависит от температуры, т.к. определяется состоянием поверхности кристалла полупроводника. Основной особенностью тока утечки является нестабильность во времени, которая называется ползучестью.

Суммарное значение тока неосновных носителей при температуре до 400С много меньше тока диффузии: Iпр/Iобр = 104 – 105. Из этого соотношения следует, что несимметричный ступенчатый p-n-переход обладает вентильными свойствами.

3. Вольтамперная характеристика p-n-перехода.

Вольтамперная характеристика p-n-перехода приведена на рис.5, где прямая и обратная ветви изображены в разных масштабах. Участки прямой характеристики: 0–А, А–В, В–С. На участке 0–А прямой ток не протекает из-за тормозящего действия потенциального барьера на p-n-переходе. На участке А–В ток возрастает, т.к. часть электронов преодолевает потенциальный барьер. На участке А–В изменение тока носит нелинейный характер. На участке В–С действие потенциального барьера незначительное, т.к. большая часть электронов имеет энергию достаточную для диффузии из n-слоя в p. Участок В–С является линейным и рабочим для p-n-перехода. На нем при незначительном увеличении напряжения ток резко возрастает. Рассмотренный закон изменения прямого тока связан с различными скоростями электронов, а именно, число электронов с большими скоростями мало, а с малыми скоростями – велико.

 

Рис.5. Вольтамперная характеристика ступенчатого p-n-перехода

 

 

На участке 0–D обратный ток резко возрастает при незначительном увеличении обратного напряжения. Это связано с тем, что при заданной температуре в структуре образуются тепловой ток и ток термогенерации. На участке D–E при значительном увеличении напряжения происходит незначительное увеличение тока. Этот участок носит приблизительно линейный характер, т.к. ток термогенерации зависит от обратного напряжения по закону Iтгº , а ток утечки пропорционален обратному напряжению. В точке Е происходит пробой p-n-перехода. Если материал полупроводника – кремний, то в точке Е происходит резкий переход на участок пробоя.

При спрямлении рабочего участка В–С на оси напряжений определяется пороговое напряжение Uпор (рис.6). Величина этого напряжения зависит от материала полупроводника и составляет величину 0,2–0,6 В.

Величина рабочего напряжения, которое прикладывается к переходу, составляет десятки и сотни вольт, поэтому имеет смысл рассмотреть вольтамперную характеристику в одинаковых масштабах для напряжения и для тока. При этом прямая вольтамперная характеристика сливается с осью тока (рис.7). На рис.7 масштабы по току и напряжению одинаковые для прямого и обратного включения. Обратная ветвь сливается с осью напряжений до участка пробоя. Итак, согласно рис.7, вольтамперная характеристика несимметричного ступенчатого p-n-перехода представляет собой характеристику идеального вентиля, а p-n-переход применяется в выпрямительных диодах.

Диффузия электронов при прямом включении носит характер впрыскивания, или инжекции. Инжектирующий слой, имеющий относительно малое удельное сопротивление, называется эмиттером. В рассмотренном примере эмиттер – n-слой. Эмиттер имеет малое удельное сопротивление из-за повышенной концентрации основных носителей по сравнению с p-слоем. Второй слой, в который происходит инжекция, называется базой. База имеет относительно большое удельное сопротивление из-за пониженной концентрации примесей по сравнению с эмиттером.

В слове диод «ди» означает наличие двух выводов или двух электродов полупроводникового прибора. Разновидности диодов:

1) плоскостные выпрямительные;

2) точечные выпрямительные;

3) диоды Шоттки;

4) туннельные диоды;

5) полупроводниковые стабилитроны;

6) варикапы.

4. Параметры выпрямительных диодов.

Плоскостные выпрямительные диоды различаются по мощности и диапазону частот. По мощности они делятся на три группы: маломощные, средней мощности, большой мощности. Маломощные диоды имеют предельный ток Iп = 10–100 мА, диоды средней мощности – Iп = 0,1–10 А, большой мощности – Iп ³ 10 А. Чем больше предельный ток, тем меньше граничная частота работы диода. Например, диод с предельным током 500 А имеет граничную частоту работы 600 Гц. Маломощные диоды имеют граничную частоту в пределах десятков, сотен килогерц.

Полупроводниковые диоды имеют два вида параметров: характеризующие параметры и предельные. Характеризующие параметры определяют значения электрических, тепловых и механических величин в заданной точке вольтамперной характеристики.

4.1. Основные характеризующие параметры диода.

R – сопротивление постоянному току, которое определяется как для прямой, так и для обратной ветви: R = .

Ri – дифференциальное сопротивление, которое называется еще внутренним, или динамическим: Ri = . Оно определяется для линейного рабочего участка прямой ветви: Ri =  (рис.6).

Uпор – пороговое напряжение, которое определяется по спрямленному линейному участку (рис. 6).

Р – мощность, рассеиваемая на переходе, . Мощность Р нагревает переход, а тепло рассеивается в окружающую среду.

Rt – тепловое сопротивление, которое определяет способность диода рассеивать тепло, выделяемое на переходе. Значение установившегося теплового сопротивления переход-среда равно: Rt пс уст =  ≠ [град/Вт].

uпр – прямое падение напряжения; представляет собой мгновенное значение напряжения для значения прямого тока: Iпр = (2¸3)Iпред.

Uпроб – обратное напряжение, при котором диод теряет вентильные свойства.

Предельные параметры диода.

Iпред – предельный ток – это максимально допустимое среднее значение тока в однополупериодной схеме выпрямления однофазного тока. Его значение зависит от типа охладителя и скорости охлаждающего воздуха или воды. По значению тока различают диоды малой, средней и большой мощности. К мощным диодам относятся диоды с током Iпред ³ 10 А.

Uп – повторяющееся напряжение – это максимально допустимое импульсное напряжение, которое прикладывается к диоду в обратном направлении. По значению Uп определяется класс вентиля (класс = Uп/100). Выпрямительные диоды выполняются от 1 до 22 класса. Класс вентиля берется по импульсному напряжению, т.к. нагрузка выпрямителя носит индуктивный характер, а прерывание тока в индуктивности создает перенапряжение, которое складывается с синусоидальным напряжением.

Uнеп – неповторяющееся напряжение – это максимально допустимое импульсное напряжение, которое прикладывается однократно к вентилю в аварийной ситуации. Повторное приложение напряжения Uнеп снижает класс вентиля. Для вентиля большой мощности Uнеп @ Uп+200 В.

Iуд – ударный ток, который определяется для вентилей большой мощности – это максимально допустимая амплитуда одной полуволны, имеющей длительность 10 миллисекунд (рис. 8).

 

Рис.8. Ударный ток

 

[qpn] – максимально допустимая температура p-n-перехода, которая для кремниевых диодов составляет величину 120 – 1250 С.

Рдоп – максимально допустимая мощность, рассеиваемая на переходе.

 

Рис.9. Кривая максимально допустимой мощности рассеивания

 

Мощность Рдоп рассеивается при максимально допустимой температуре p-n-перехода: Рдоп = ([qpn] – Токр)/Rt [Вт], где Токр – температура окружающей среды. Построение линии Рдоп = 1 Вт для диода с предельным током 10 А показано на рис.9. Для построения кривой составляется таблица 1. В ней задается значение тока, по которому вычисляется значение напряжения U = Рдоп/I.

 

Таблица 1 – Значения тока и напряжения для Pдоп = 1 Вт

I, А 1,0 2,0 5,0 10
U, В 1,0 0,5 0,2 0,1

5. Схема замещения диода

 

.

 

Схема замещения диода приведена на рис.10, где rэ и rб – омические сопротивления слоев эмиттера и базы;

rpn – дифференциальное сопротивление p-n-перехода. Омические сопротивления слоев определяются известным выражением: .

Дифференциальное сопротивление rpn определяется выражением . В прямом направлении rpn очень мало, поэтому внутреннее сопротивление диода определяется сопротивлением базы: Ri @ rб. В обратном направлении омические сопротивления слоев много меньше rpn, поэтому Rобр @ rpn.

Одноименная область зарядов на p-n-переходе представляет собой диэлектрик, а прилегающие слои полупроводников – обкладки конденсатора, поэтому в схеме замещения появляется емкость p-n-перехода. Различают барьерную и диффузионную емкости.

Барьерная определяется для обратного включения диода. Она зависит от распределения зарядов в p-n-переходе, которое, в свою очередь, зависит от обратного напряжения Uобр. Зависимость барьерной емкости от обратного напряжения приведена на рис.11. В общем случае характеристика носит нелинейный характер, но можно выделить на ней линейный участок. С увеличением обратного напряжения емкость Сpn уменьшается. Изменение емкости p-n-перехода используется в диодах – варикапах.

 

Рис.11. Зависимость барьерной емкости от напряжения и условное обозначение варикапа

 

Диффузионная емкость определяется для прямого включения диода. Она зависит от распределения зарядов в базе, т.к. ширина перехода становится очень малой. Распределение зарядов в базе зависит от прямого тока.

Емкость Сpn влияет на скорость изменения концентрации основных носителей, когда в схеме действуют высокочастотные сигналы или прямоугольные импульсы, поэтому, как параметр, емкость Сpn используется при расчете переходных процессов. Для уменьшения влияния Сpn необходимо иметь меньшее значение емкости.

 

Экспериментальная часть

 

1. Снятие вольтамперной характеристики кремниевого диода D226 методом амперметра-вольтметра

Резистор Rб (балластный) служит для ограничения тока, шунт Rш – для снятия осциллограммы тока, потенциометр П2 – для регулирования питающего напряжения. Снять зависимость тока диода от напряжения на нем Iа = F(Ua). Данные занести в таблицу 2.

 

Таблица 2 – Примерные значения тока и напряжения диода

Iа, мА 0 5 10 30
Ua, В 0-0,60 0,70 0,75 0,78

 

При изменении полярности питающего напряжения необходимо изменить подключение миллиамперметра и вольтметра.

Построить вольтамперную характеристику. Определить по ней пороговое напряжение, дифференциальное сопротивление, обратный ток, прямое падение напряжения при токе 30 мА. Определение параметров показано на рис.13.

 

Рис.13. Определение параметров диода по вольтамперной характеристике

 

2. Снятие вольтамперной характеристики выпрямительных диодов при помощи осциллографа

Собрать схему, приведенную на рис.14.

Рис.14. Схема для снятия вольтамперной характеристики диода при помощи осциллографа: Х – горизонтальный вход осциллографа, Y – вертикальный вход

 

Зарисовать вольтамперные характеристики диодов: кремниевого типа D226 и германиевого типа D7А. Для каждого диода снять 2 характеристики: без делителя напряжения и с делителем, причем, Кдел = 4. Определить масштабы тока и напряжения. По характеристикам определить пороговое напряжение, прямое падение напряжения при токе 30 мА. Сравнить параметры в пунктах 1 и 2. Сравнить параметры кремниевого и германиевого диодов.

3. Снятие вольтамперной характеристики туннельного диода при помощи осциллографа.

 

Собрать схему, приведенную на рис.15.

 

Рис.15. Схема для снятия вольтамперной характеристики туннельного диода при помощи осциллографа

Схема позволяет снять прямую ветвь характеристики. Перед началом опыта движок потенциометра поставить в положение, показанное на рис.15. Внимание! Постепенно увеличивать напряжение от нуля.

 


Рис.16. Вольтамперная характеристика туннельного диода

 

По характеристике определить дифференциальные сопротивления на разных участках прямой ветви, пиковый ток, ток впадины, отношение пикового тока к току впадины, напряжение пика, напряжение впадины (рис.16.) При оформлении отчета представить таблицы измерений и обработанные осциллограммы. Сделать выводы по каждому пункту.

Внимание! Тумблер «Усилитель Y» держать в положении «x10».

 

Контрольные вопросы

1. Пояснить образование несимметричного ступенчатого p-n-перехода.

2. Как изменить сопротивление p-n-перехода?

3. Почему возрастает ток при прямом включении p-n-перехода, а при обратном включении p-n-переход закрыт?

4. Что показывают предельные параметры диода?

5. Перечислить характеризующие и предельные параметры выпрямительного диода?

6. Что такое ток термогенерации?

7. Причины возникновения пробоя p-n-перехода.

8. Как определить класс вентиля?

9. Как зависит вид вольтамперной характеристики диода от концентрации примесей в слоях?

10.Как снимается вольтамперная характеристика диода?

 

Таблица вариантов

 

№ вар. Uпор, В Ri, Ом Pдоп, Вт Iп, А № вар. Uпор, В Ri, Ом Pдоп, Вт Iп, А
1 0,40 0,80 0,32 0,40 13 0,40 0,90 0,32 0,40
2 0,50 0,80 0,50 0,50 14 0,50 0,90 0,40 0,50
3 0,60 0,80 0,70 0,60 15 0,60 1,50 0,24 0,30
4 0,45 0,75 0,70 0,70 16 0,45 1,20 0,24 0,30
5 0,65 0,70 0,75 0,80 17 0,65 1,30 0,28 0,35
6 0,40 0,70 0,80 0,90 18 0,40 0,75 0,70 0,80
7 0,45 0,60 1,0 1,0 19 0,45 0,65 1,10 1,0
8 0,50 0,20 1,50 2,50 20 0,50 0,25 1,45 2,50
9 0,40 0,10 3,0 5,0 21 0,40 0,10 3,50 5,0
10 0,45 0,10 4,0 7,0 22 0,45 0,09 5,0 7,0
11 0,50 0,08 6,0 8,0 23 0,50 0,07 6,0 8,0
12 0,40 0,05 8,0 10,0 24 0,40 0,05 8,0 10,0

Примечание: Студенты, получившие подвариант А, строят вольтамперную характеристику диода; получившие подвариант Б – строят кривую максимально допустимой мощности рассеивания; получившие подвариант В – составляют таблицу параметров для выпрямительных диодов большой мощности.


Работа №3


Дата добавления: 2019-07-15; просмотров: 337; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!