Линейные и объемные полимеры.



Стекла.

Стекла – неорганические квазиаморфные твердые вещества.

Различают их по составу:

· элементарные;

· халькогенидные;

· оксидные.

В основе оксидных неорганических стекол – стеклообразующий окисел (SiO2, P2O5, B2O3, GeO2).

Наиболее распространены стёкла на основе SiO2 – силикатные (дёшевы, доступны, хорошо обрабатываемы, обладают хорошими механическими характеристиками, неплохими электроизоляционными свойствами).

В стекловарную печь загружают шихту измельчённых компонентов, которые предварительно тщательно смешивают в нужных пропорциях. При нагреве шихта плавится, летучие компоненты удаляются, оставшиеся окислы реагируют между собой, что приводит к образованию однородной стекломассы, которая используется для изготовления изделий, отливкой, формовкой, либо комбинацией этих воздействий с последующей релаксацией внутренних напряжений.

Свойства стёкол сильно зависят от состава начальной шихты:

1. безщелочные стёкла обладают высокой нагревостойкостью, хорошими электроизоляционными свойствами. Однако из них трудно изготовить изделия со сложной конфигурацией, так как они мало пластичны в расплавленном состоянии.

2. щелочные стёкла без тяжёлых окислов обладают пониженной нагревостойкостью и худшими электроизоляционными свойствами, но повышенной технологичностью. Являются группой обычных (бытовых) стёкол.

3. щелочные стёкла с высоким содержанием тяжёлых окислов. Увеличение доли тяжёлых окислов приводит к улучшению электроизоляционных свойств стекла при сохранении технологичности.

4. кварцевое стекло получают из чистого оксида кремния SiO2 при температуре 1700°С. Обладает хорошими электроизоляционными свойствами, но плохо обрабатывается. Имеет оригинальный комплекс свойств: высокую нагревостойкость, малый ТКЛР и высокий предел прочности на сжатие. В отличие от предыдущих групп, пропускает УФ излучение.

По назначению различают:

1. электровакуумное стекло. ТКЛР подобран таким образом, чтобы он совпадал с ТКЛР металлов, используемых для формирования выводов;

2. изоляционные стёкла используются для изоляции выводом в металлостеклянных корпусах различных приборов;

3. цветные стёкла (светофильтры, глазури, эмали);

4. лазерные стёкла используются в качестве рабочих тел лазеров. Для достижения нужных свойств в стекло вводятся центры генерации – ионы неодима Nd3+;

5. стекловолокно получают методом вытяжки через фильеры с быстрой намоткой на вращающиеся барабаны;

6. световоды;

Ситаллы

Стеклокристаллические материалы, получаемые путём стимулированной кристаллизации стёкол специального состава. Они занимают промежуточное состояние между стеклом (аморфное состояние) и керамикой (поликристаллическое).

Недостатком стёкол считается процесс местной кристаллизации – «расстекловывание». Он приводит к уменьшению однородности и к ухудшению свойств. Поэтому к стёклам, склонным к спонтанной кристаллизации добавляют специальные вещества, служащие центрами кристаллизации. В результате получаются ситаллы. Они имеют однородную, очень мелкокристаллическую структуру. Благодаря этому, ситаллы позволяют в результате механической обработки получить очень гладкие поверхности с равномерным распределением свойств. Ситаллы благодаря этому используются в качестве подложек плёночных и гибридных микросхем, обладают лучшей теплопроводностью, чем стекло и немного худшими электроизоляционными свойствами. Редко используются в качестве конденсаторных материалов.

 

Керамические диэлектрики.

Под керамикой понимают большую группу диэлектрических материалов с самыми разнообразными свойствами, объединённых общностью технологического цикла формирования. Эта общность обуславливается наличием в процессе изготовления высокотемпературного обжига исходного сырья.

Керамические диэлектрики обладают огромным количеством достоинств, отличающих их от других материалов:

1. Высокая нагревостойкость;

2. Отсутствие у большинства керамических материалов гигроскопичности;

3. Хорошие электроизоляционные свойства;

4. Достаточная для выполняемых функций механическая прочность;

5. Стабильность характеристик и надёжность;

6. Стойкость к воздействию излучений высоких энергий;

7. Устойчивость к воздействию биологических факторов;

8. Дешевизна сырья.

Классификация и свойства керамических материалов

Выделяют электроизоляционные или установочные и конденсаторные виды керамики.

По электрическим свойствам все установочные керамические материалы делятся на низкочастотную и высокочастотную керамику.

В порядке возрастания эксплуатационной частоты:

· Электроизоляционный фарфор (изготавливается из специальных сортов глины и отличается высокими диэлектрическими потерями при довольно приличных остальных свойствах).

· Радиофарфор (снижены диэлектрические потери за счёт введения окиси бария).

· Ультрафарфор (высокочастотный диэлектрик с высоким содержанием Al2O3, большое распространение получил УФ46).

· Корундовая керамика (на 95-98% состоит из Al2O3, является ВЧ диэлектриком с очень малыми потерями, но отличается крайне плохой механической обрабатываемостью). Данная керамика используется в качестве изоляторов вакуумных приборов и в качестве основы металлокерамических микроэлектронных изделий (микросхем).

Для изготовления подложек интегральных микросхем используется разновидность алюмооксидной керамики под названием поликор. Его отличает высокая плотность вещества (большое содержание стекловидной фазы), что позволяет получить поверхность очень гладкую и высокого качества. По сравнению с ситалловыми и стеклянными, подложки из поликора отличаются высокой теплопроводностью.

Все перечисленные материалы крайне редко используются в качестве конденсаторных. К ним так же можно отнести цельзиановую керамику (BaO·Al2O3·2SiO2); стеотитовую керамику (3MgO·4SiO2·H2O), форстерритовую керамику (2MgO·SiO2).

 


Дата добавления: 2019-07-15; просмотров: 170; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!