Принципы деятельности центральной нервной системы



Для деятельности центральной нервной системы характерна определенная упорядоченность и согласованность рефлекторных реакций, т. е. их координация. Взаимодействие двух нервных процессов—возбуждения и торможения, лежащих в основе всех сложных регуляторных функций организма, закономерности их одновременного протекания в различных нервный центрах, а также последовательная смена во времени определяют точность и своевременность ответных реакций организма на внешние и внутренние воздействия.

Иррадиация и концентрация нервных процессов. Проведение афферентной волны по рефлекторной дуге вызывает в ее нервных центрах состояние возбуждения или торможения. Эти процессы при определенных условиях могут охватывать и другие рефлекторные центры. Распространение процесса возбуждения на другие нервные центры называют иррадиацией. Она осуществляется благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг, так что при раздражении одного рецептора возбуждение в принципе может распространяться в центральной нервной системе в любом направлении и на любую нервную клетку.

Процесс иррадиации играет положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Активация большого количества различных нервных центров позволяет отобрать из их числа наиболее нужные для последующей деятельности, т. е. совершенствовать ответные действия организма. Благодаря иррадиации возбуждения между различными нервными центрами возникают новые функциональные связи — условные рефлексы. На этой основе возможно, например, формирование новых двигательных навыков.

Торможение в центральной нервной системе. Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга».

Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки). Отсюда им было сделано заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием «Сеченовского торможения».

Тормозные процессы — необходимый компонент в координации нервной деятельности. Во-первых, процесс торможения ограничивает иррадиацию возбуждения, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов, осуществляя координационную функцию. В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т. е. играет охранительную роль.

По месту возникновения различают пресинаптическое торможение и постсинаптическое.

Постсинаптическое торможение. Оно возникает в постсинаптической мембране нейрона в результате действия тормозного медиатора и связано с наличием в центральной нервной системе специальных тормозных нейронов. Это особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор. Природа тормозного медиатора в настоящее время точно не установлена. Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный ПД, но в отличие от других нейронов окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. Под влиянием этого медиатора возникает кратковременная гиперполяризация постсинаптической мембраны следующего нейрона и регистрируется тормозной постсинаптический потенциал (ТПСП). В результате тормозные клетки не возбуждают, а тормозят те нейроны, на которых оканчиваются их аксоны. Такой вид торможения называют прямым, так как оно возникает сразу, без предварительного возбуждения.

Специальные тормозные нейроны — это клетки Рэншоу в спинном мозгу и корзинчатые клетки в промежуточном мозгу. Клеткам Рэншоу принадлежит важная роль в координации деятельности спинного мозга. Большое значение, например, эти клетки имеют при регуляции деятельности мышц-антагонистов. Они обеспечивают развитие торможения в мотонейронах мышц-антагонистов, что облегчает осуществление сокращения этих мышц. Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов, ограничивая (тормозя) чрезмерное их возбуждение. Корзинчатые клетки играют важную роль в регуляции деятельности высших отделов мозга — промежуточного мозга и коры больших полушарий. Они являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий Медиаторами в первых клетках является гамма – амино – масляная кислота и у вторых – глицин.

Пресинаптическое торможение. Оно возникает перед синаптическим контактом — в пресинаптической области. Окончания аксонов одной нервной клетки образуют аксоаксональный синапс на окончании аксона другой нервной клетки и блокируют передачу возбуждения в последнем.

Доминанта. Активность нервных центров непостоянна, и преобладание активности одних из них над активностью других вызывает заметные перестройки в процессах координации рефлекторных реакций. Исследуя особенности межцентральных отношений, А. А. Ухтомский (1923г) обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например повторяющиеся акты глотания, то электрические раздражения моторных центров коры не только перестают вызывать в этот момент движения конечностей, но и усиливают и ускоряют протекание начавшейся цепной реакции глотания, оказавшейся главенствующей. Он сформулировал принцип доминанты как рабочий принцип деятельности нервных центров, обозначив  термином доминанта  господствующий очаг возбуждения в центральной нервной системе, определяющий текущую деятельность организма .Основные черт доминанты следующие: 1) повышенная возбудимость нервных центров, 2) стойкость возбуждения во времени, 3) способность к суммации посторонних раздражении и 4) инерция доминанты. Доминирующий (господствующий) очаг может возникнуть лишь при определенном функциональном состоянии нервных центров. Одним из условий его образования является повышенный уровень возбудимости нервных клеток, который обусловливается различными гуморальными и нервными влияниями (длительными афферентными импульсациями, гормональными перестройками в организме, воздействиями фармакологических веществ, сознательным управлением нервной деятельностью у человека и пр.).

В норме в нервной системе всегда имеются какие-либо доминанты. Бездоминантное состояние—это очень слабое возбуждение, разлитое более или менее равномерно по различным нервным центрам. Сходное состояние возникает у спортсменов в процессе полного расслабления, при аутогенной тренировке. Путем такого расслабления добиваются устранения мощных рабочих доминант и восстановления работоспособности нервных центров.

Как фактор поведения доминанта связана с высшей нервной деятельностью, с психологией человека. Доминанта является физиологической основой акта внимания. Она определяет характер восприятия раздражений из внешней среды, делая его односторонним, но зато более целеустремленным. При наличии доминанты многие влияния внешней среды остаются вне внимания, но зато более интенсивно улавливаются и анализируются те, которые особенно интересуют человека. Доминанта — мощный фактор отбора биологически и социально наиболее значимых раздражений.

Принцип конвергенции. К одной и той же нервной клетке благодаря многочисленным побочным взаимосвязям рефлекторных дуг могут поступать импульсы от различных рецепторов тела, т. е. сигналы о самых разнообразных раздражениях. Схождение импульсов, поступивших по различным афферентным путям, в каком-либо одном центральном нейроне или нервном центре называется конвергенцией.

В низших отделах нервной системы—спинном и продолговатом мозгу—конвергенция выражена гораздо меньше. Нейроны этих отделов получают информацию от рецепторов сравнительно небольших участков тела — рецептивных полей одного и того же рефлекса. В надсегментарных отделах, особенно в коре больших полушарий, происходит конвергенция импульсов различного происхождения от разных рефлекторных путей. Нейроны надсегментарных отделов могут получать сигналы о световых, звуковых, проприоцептивных и прочих раздражениях, т. е. сигналы разной модальности. На теле нейронов постоянно изменяются «конвергентные узоры» — возбужденные и заторможенные участки. Подсчитано, что размеры рецептивных полей корковых нейронов, т. е. участков тела, от которых к ним могут поступать афферентные раздражения, в 16— 100 раз больше, чем размеры тех же полей для афферентных клеток спинальных рефлекторных дуг. Благодаря такому разнообразию поступающей информации в нейронах вышележащих отделов головного мозга может происходить ее широкое взаимодействие, сопоставление, отбор, выработка адекватных реакций и установление новых связей между рефлексами.

Принцип общего конечного пути. Афферентных нейронов в центральной нервной системе в несколько раз больше, чем эфферентных. В связи с этим многие афферентные влияния поступают к одним и тем же вставочным и эфферентным нейронам, которые являются для них общими конечными путями к рабочим органам. Система реагирующих нейронов образует таким образом как бы воронку («воронка Шеррингтона»). Множество разнообразных раздражении может возбудить одни и те же мотонейроны спинного мозга и вызвать одну и ту же двигательную реакцию (например, сокращение мышц-сгибателей верхней конечности). Английский физиолог Ч. Шеррингтон, установивший принцип общего конечного пути, предложил различать союзные и антагонистические рефлексы. Встречаясь на общих конечных путях, союзные рефлексы взаимно усиливают друг друга, а антагонистические—тормозят. В первом случае в нейронах общего конечного пути имеет место пространственная суммация (например, сгибательный рефлекс усиливается при одновременном раздражении нескольких участков кожи). Во втором случае происходит борьба конкурирующих влияний за обладание общим конечным путем, в результате чего один рефлекс осуществляется, а другие затормаживаются. При этом освоенные движения выполняются с меньшим трудом, так как в их основе лежат упорядоченные во времени синхронизированные потоки импульсов, которые проходят через конечные пути легче, чем импульсы, поступающие в случайном порядке.

Преобладание на конечных путях той или иной рефлекторной реакции обусловлено ее значением для жизнедеятельности организма в данный момент.

 

Спинной мозг

Спинной мозг является низшим и наиболее древним отделом центральной нервной системы. Состоит из двух симметричных половин, ограниченных друг от друга спереди глубокой срединной щелью, а сзади – соединительно- тканной перегородкой. Внутри находится серое вещество, а на периферии – белое. На разрезе имеет вид «бабочки». Спинной мозг имеет значительно меньшую самостоятельность у человека по сравнению с животными. У человека его вес по отношению к головному мозгу составляет всего 2% (у кошек—25%, у кролика—45%, у черепах— 120%).В основе строения спинного мозга лежит принцип сегментарности.

Надежность сегментарных функций спинного мозга обеспечена множественностью его связей с периферией: каждый сегмент спинного мозга иннервирует 3 метамера (участка) тела — собственный, половину вышележащего и половину нижележащего, а каждый метамер тела получает иннервацию от 3 сегментов спинного мозга. Такое устройство гарантирует осуществление функций спинного мозга при возможных его перерывах и других поражениях.

Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки (Закон Бэлла – Мажанди).Закон подтвержден многочисленными экспериментальными данными. В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5:1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов.  Основную часть волокон в спинномозговых корешках составляют мякотные волокна. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна, идущие  к скелетным мышцам и вегетативным ганглиям.

Нейронная организация:

В составе серого вещества спинного мозга человека насчитывают около 13,5 млн. нервных клеток. Из них двигательные клетки — мотонейроны — составляют всего 3%, а 97% -  представляют промежуточные нервные клетки (вставочные, или интернейроны). Среди мотонейронов спинного мозга различают крупные клетки — альфа-мотонейроны и мелкие клетки — гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращение скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц, а регулируют чувствительность мышечных рецепторов, информирующих мозг о выполнении этих движений.

Особое место в деятельности спинного мозга занимают его промежуточные нейроны, или интернейроны. Это в основном мелкие клетки, через которые осуществляются межнейронные взаимодействия в спинном мозгу и координация деятельности мотонейронов. К промежуточным нейронам относятся и тормозные клетки Рэншоу, с помощью которых тормозится чрезмерное возбуждение мотонейронов. Особую группу эфферентных нейронов составляют преганглионарные нейроны вегетативной нервной системы, расположенные в боковых и передних рогах спинного мозга. Целиком в пределах ЦНС расположены нейроны восходящих трактов. В различных отделах спинного мозга локализованы нервные центры, контролирующие важные вегетативные функции человека: центры дефекации, мочеиспускания и половых функций(крестцовый отдел), потоотделения, артериального давления, терморегуляции(поясничный отдел), сердечной деятельности(грудной отдел), диафрагмального дыхания, движения глазного яблока и расширение зрачка(шейный отдел).

           Спинной мозг выполняет две функции – рефлекторную и проводниковую. Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы — сгибательные и разгибательные, возникающие при раздражении рецепторов кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая их напряжение — мышечный тонус.

Мышечный тонус возникает в результате раздражения проприорецепторов мышц и сухожилий при их растяжении во время движения человека или при воздействии силы тяжести. Импульсы от проприорецепторов поступают к мотонейронам спинного мозга, а импульсы от мотонейронов направляются к мышцам, обеспечивая поддержание их тонуса. При разрушении нервных центров спинного мозга или при перерезке нервных волокон, идущих от мотонейронов к мышцам, исчезает тонус скелетных мышц. Участие спинного мозга в двигательной деятельности проявляется не только в поддержании тонуса, но и в организации элементарных двигательных актов и сложной координации деятельности различных мышц (например, согласованной деятельности мышц-антагонистов). Это возможно благодаря мощному развитию системы вставочных нейронов и их богатым взаимосвязям внутри спинного мозга.

Специальные мотонейроны иннервируют дыхательную мускулатуру — межреберные мышцы и диафрагму и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, железы внутренней секреции, пищеварительный тракт и др.) и осуществляют рефлексы, регулирующие их деятельность. В спинном мозге замыкается огромное количество рефлекторных дуг, с помощью которых регулируются как соматические, так и вегетативные функции. К числу наиболее простых относятся сухожильные рефлексы. Они вызываются ударом по сухожилию и реакция проявляется в виде резкого сокращения мышцы. Это  локтевой,  коленный и  ахиллов. Клинически важными рефлексами являются также : брюшные рефлексы(верхний, средний, нижний), кремастерный, анальный и подошвенный рефлексы.

Более сложно организованы ответы, выражающиеся в координации сгибания или разгибания мышц конечностей ( направлены на избегание различных повреждающих действий). Еще более сложный характер имеют ритмические( чесательный, потирательный, шагательный) и позные рефлексы(стояния, шагания).

С участием спинного мозга осуществляются примитивные процессы регулирования деятельности скелетных мышц, позволяющие выполнять фазные движения типа сгибания или разгибания в соответствующих суставах, а также регулирование тонуса мышц, которое , в свою очередь, реализуется с помощью миотатических и позно – тонических рефлексов. Кроме того, спинной мозг представляет собой 1- й уровень управления произвольными движениями.

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации (проводниково –информационная роль) и с проведением импульсов, идущих из головного мозга в спинной(проводниково – исполнительская роль). Наиболее важными восходящими путями спинного мозга, по которым  передаются в головной мозг сигналы от интерорецепторов внутренних органов являются: 1) путь в продолговатый мозг—спинно-бульбарный; 2) в мозжечок—спинно-мозжечковый, несущие импульсы ог проприорецепторов мышц, суставов и сухожилий, частично от рецепторов кожи; 3) в промежуточный мозг—спинно-таламический путь - от тактильных, болевых и терморецепторов ( пучок Голля, пучок Бурдаха, Флексига, Говерса, спино – тектальный, дорсальный и вентральный спино – таламические пути). В свою очередь, от головного мозга  импульсы идут в спинной мозг по следующим путям: Ретикуло -, текто -, оливо -, вестибуло - , рубро- и кортикоспинальный нисходящие пути.

      У человека процессы координации на уровне спинного мозга в значительно большей мере подчинены регулирующим влияниям головного мозга, чем у животных. Нарушение связей спинного мозга с головным приводит к выраженному расстройству протекания спинно-мозговых рефлексов, что называется спинальным шоком. При травме мозга от Т2 доТ12 происходит полная параплегия, сопровождающаяся мгновенным и окончательным выключением всех произвольных движений мышц и иннервируемых ими сегментов, лежащих ниже места перерезки; полной и окончательной потерей чувствительности в областях, соответствующих этим сегментам, и временной арефлексией. Перерезка выше 4 – 5 шейных сегментов влечет за собой смерть вследствие прекращения дыхания.  Выраженность и длительность спинального шока зависит от уровня развития животного: у лягушки – спинальный шок длится несколько минут, у кролика –более 15 мин., у собаки – несколько часов, у обезьян – более суток и у человека – несколько недель и месяцев. Это означает, что чем выше организована ЦНС, тем сильнее развит механизм контроля рефлекторной деятельности спинного мозга со стороны головного.

 Процесс выздоровления при правильном лечении проходит в несколько стадий:

1. Полная арефлексия(4 – 6 недель).

2. Небольшие рефлекторные движения пальцев ног (две недели – несколько месяцев).

3. Усиление сгибательных рефлексов(до 3-4 месяцев).

4. Хроническая стадия с резкой выраженностью разгибательных рефлексов, переходящих в длительные разгибательные спазмы. Эти движения могут быть настолько мощными, что больные способны стоять без поддержки (спинальное стояние).

Отклонение от подобной клинической картины(особенно наличие выраженных разгибательных рефлексов и повышенного мышечного тонуса через короткое время после травмы) служит признаком неполного перерыва спинного мозга, т.е.благоприятным прогностическим признаком. Диагностическими тестами для определения травмы спинного мозга являются: положительное проявление рефлексов Бабинского(тыльное разгибание большого пальца стопы при штриховом раздражении подошвы стопы), Шефера(тыльное разгибание большого пальца при сдавливании ахиллова сухожилия), Янушкевича(хватательный рефлекс при касании пальцев руки каким – либо предметом).

 


Дата добавления: 2019-07-15; просмотров: 228; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!