Уровни прочности канатной стали. Технология упрочнения



Уровень прочности канатной стали колеблется в пределах 1300…2400 МПа.

Технология упрочнения.

Чем тоньше пластинки цементита в перлите, тем больше упрочнение. Пластинки тем тоньше, чем ниже температура распада переохлажденного аустенита. Оптимальную температуру изотермического распада надо быстро достичь и точно выдержать. Поэтому делается патентирование: протягиваемая проволока проходит через печь (или соляную ванну) нагрева и быстро охлаждается до температуры распада аустенита в ванне с расплавом свинца и солей. После волочения делается еще низкий отпуск для снятия напряжений.

К стали для патентирования (упрочнения) есть ряд жестких требований. Во-первых, чистота по легирующим элементам (Сr<0,10%; Ni<0,15%; Сu<0,2%), иначе изотермический распад аустенита за время пребывания в свинцовой ванне не закончится, а остаток аустенита на выходе из ванны даст хрупкий мартенсит или бейнит. Использование лома в шихте исключается.

Во-вторых, вытягиваясь при волочении, границы зерна исходного аустенита превращаются в ленты вдоль оси проволоки.

Если на них были сегрегации фосфора или наночастицы АlN или МnS, проволока расслаивается по этим лентам при скручивании (или при волочении). Поэтому когда-то сталь для пружин плавили только из древесноугольного чугуна (чистого по фосфору и сере).

Сегодня его заменило железо прямого восстановления.

В-третьих, важна чистота по неметаллическим включениям.

Если включения деформируемы и при холодном волочении (как МnS), то из округлых в слитке они превратятся в нити макроскопической длины и субмикронной толщины, а включения-дендриты - в пучок нитей, по которым и произойдет расслой. Канаты из стали 60 с округлыми сульфидами (от введения РЗМ) выдерживали 25000 перегибов, а с длинными включениями - только 18000..

Недеформируемое включение (как Аl2О3) при размере 100 мкм сравнимо с диаметром проволоки, которая в этом месте оборвется еще при волочении (и потому в готовой проволоке таких не находят). От оксидов размером 3…10 мкм растут трещины усталости в пружинах или в канате, поэтому важны как содержание кислорода и серы в расплаве, так и приемы раскисления десульфурации.

Наконец, нагревы перед патентированием требуют защитной атмосферы, так как даже тонкий обезуглероженный слой с малопрочным свободным ферритом- очаг усталостного разрушения. Если же окалину стравливают, то затем нужен подогрев или выдержка, чтобы вышел захваченный водород, иначе проволока может растрескаться еще при хранении.

 

Виды коррозионных повреждений нержавеющей стали

 

Коррозия - это процесс разрушения металла под воздействием внешней среды. По механизму протекания различают химическую коррозию, возникающую под воздействием газов или неэлектролитов (нефть и др.), и электрохимическую, развивающуюся в случае контакта металла с электролитами (кислоты, щелоча, соли, влажная атмосфера, почва, морская вода).

Стали, устойчивые против электрохимической коррозии, называют коррозионностойкими (нержавеющими).

Нержавеющие стали разделяют на две основные группы: хромистые и никелевые.

Хромистые коррозионностойкие стали применяют трех типов: с 13, 17 и 27% Cr, при этом в сталях с 13% Cr содержание углерода может изменяться в зависимости от требований в пределах от 0,08 до 0,40%. Структура и свойства хромистых сталей зависят от количества хрома и углерода. Так, повышение концентрации углерода в стали приводит к образованию карбидов, уменьшая количество хрома в твердом растворе; при этом в стали возникает двухфазная структура.

Стали с 13% хрома подвержены коррозионному растрескиванию и точечной коррозии в средах, содержащих ионы хлора.

Так же нагрев закаленных сталей в интервале 500-800˚С приводит к выделению в пограничных зонах зерен карбидов хрома M23C6 и обеднению в связи с этим указанных зон хрома ниже 12%-ного предела; это вызывает снижение электрохимического потенциала пограничных участков аустенитного зерна и их растворение в коррозионной среде. Коррозионное разрушение имеет межкристаллический характер, приводит к охрупчиванию стали и называется межкристаллитной (интеркристаллитной) коррозией (МКК).


Список литературы

1. Лейкин А.Е., Родин Б.И. Материаловедение. Учебник для машиностроительных специальностей вузов. – М.: «Высшая школа», 1971.

2. Петренко Ю.А., Каратушин С.И., Глазунов К. О. Материаловедение. Методические указания по выполнению контрольных и курсовых работ для студентов специальностей 230100, 230300, 2307.12. – СПб.: Изд-во СПбГАСЭ, 2005.

3. Колесник П.А., Кланица В.С. Материаловедение на автомобильном транспорте. Учебник для студентов высших учебных заведений. – М.: Издательский центр «Академия», 2005.

4. Рогачева Л.В. Материаловедение. – М.: Колос-Пресс, 2002.

5. Никифоров В.М. Технология металлов и конструкционные материалы. – М.: Изд. «Высшая школа», 1968.

6. Шульте Ю.А. Хладостойкие стали. – М.: Металлургия, 1970.

7. Ассонов А.Д. Технология термообработки деталей машин. – М.: Машиностроение, 1969.


Дата добавления: 2019-07-15; просмотров: 123; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!