Структурная схема и принцип работы



Курсовая работа

«Расчет преобразователя частоты»

 


Содержание

 

Введение

1. Преобразователи частоты

1.1 Назначение

1.2 Структурная схема и принцип работы

1.3 Основные показатели преобразователей частоты

1.4 Классификация преобразователей частоты

2. Виды схем преобразователей частоты

3. Расчёт преобразователей частоты

Заключение

Список литературы


ВВЕДЕНИЕ

 

Подавляющее большинство радиовещательных и профессиональных приемников относится к классу супергетеродинов. Характерная особенность этих приемников состоит в преобразовании частоты.

Супергетеродинный радиоприёмник это радиоприёмник, в котором до детектирования принимаемого радиосигнала производится преобразование (понижение) его несущей частоты, не изменяющее закона модуляции. Способ супергетеродинного радиоприёма предложен в 1918 одновременно Э. Армстронгом (США) и Л. Леви (Франция).

Независимо от того, ведется ли прием длинноволновой, средневолновой или коротковолновой радиостанции, их частоты преобразуются всегда в одну и ту же промежуточную частоту, которая определяется постоянной настройкой дальнейших усилительных каскадов. Именно благодаря этому свойству можно создать высококачественный приемник с широким диапазоном волн — от длинных до коротких.

Процесс образования промежуточной частоты осуществляется в результате взаимодействия колебаний сигнала с «местным» колебанием, которое создается маломощным генератором (гетеродином), входящим в состав приемника. Взаимодействие обоих колебаний происходит в приборе с переменным параметром (например, в электронной лампе или полупроводниковом приборе с изменяемой крутизной). Образование промежуточной частоты в этом приборе с одновременным подавлением колебаний других частот, но с сохранением передаваемого сообщения представляет собой довольно сложный физический процесс.

Преимущества супергетеродинного метода:

1. Усиление в трех областях частот и, в особенности, возможность значительного усиления при добротных контурах на промежуточной частоте позволяет добиться высокой чувствительности.

2. Постоянная настройка каскадов промежуточной частоты допускает применение в них различных видов полосовых фильтров (электрических и даже электромеханических) и позволяет добиться высокой относительной избирательности.

3. На промежуточной частоте происходит основное усиление сигнала, а потому при перестройках и при смене поддиапазонов чувствительность приемника остается почти постоянной.

4. Наконец, после большого усиления на промежуточной частоте амплитуды сигнала на входе детектора оказываются достаточными для приведения в действие автоматических устройств, вроде регулятора усиления, электронно-светового индикатора настройки, устройства автоподстройки и др.

Недостатки супергетеродинного метода:

1. Усложнение схемы приёмника;

2. Возможность утечки сигнала fг в антенно-фидерное устройство;

3. Образование побочных каналов приема.


Преобразователи частоты

Назначение

 

Преобразователи частоты (ПЧ) служат для переноса спектра частот из одной области в другую без изменения характера модуляции. Они являются частью супергетеродинного приемника. В результате преобразования получается новое значение несущей частоты fпр, называемой промежуточной. Частота fпр может быть как выше, так и ниже fс. Если fпр> fс преобразование частоты вверх; fс< fпрпреобразование частоты вниз.

 

Рисунок 1

Структурная схема и принцип работы

 

ПЧ (рис.2) содержит нелинейный элемент (НЕ) и источник вспомогательного колебания, называемый гетеродином (Г). В качестве нелинейного элемента используются различные электронные приборы, нелинейные активные или реактивные сопротивления. Нелинейный элемент, преобразующий колебания сигнала с помощью гетеродина, называют смесителем.

В состав ПЧ входит также фильтр (Ф) с нагрузкойRн, необходимый для выделения напряжения промежуточной частоты.

 

 

Рисунок 2

 

В общем случае преобразование частоты можно рассматривать как результат перемножения двух высокочастотных напряжений: напряжения сигнала

 

uc= Uсcos(ωc t+ φc )

 

и напряжение гетеродина

 

uг= Uгcos(ωг t+ φг )

 

В результате такого перемножения на выходе преобразователя получается напряжение преобразованной частоты

 

uпч= kсхUсUгcos(ωпр t+ φпр )


где kсх- постоянный коэффициент, зависящий от параметров преобразователя.

Амплитуда, частота или фаза преобразованного напряжения имеют тот же закон, что и напряжение сигнала. Это означает, что при преобразовании модулированных сигналов вид и параметры модуляции не нарушаются. Перемножить напряжения можно двумя способами: с помощью нелинейных элементов или с помощью линейных цепей с переменными параметрами (параметрических цепей). В общем случае в результате нелинейного или параметрического преобразования двух напряжений на выходе смесительного элемента появляется множество комбинационных составляющих напряжений с частотами

 

ωк= |± г ± n φг |

 

где k и n - целые положительные числа.
 На избирательной нагрузке выделяется напряжение одной из комбинационных частот, которая и принимается за промежуточную частоту приемника.

 


Дата добавления: 2019-07-15; просмотров: 127; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!