Задача для самостоятельного решения
5.1. Вычислите дебаевский радиус экранирования для плазмы гелий-неонового лазера.
ВМОРОЖЕННОСТЬ МАГНИТНОГО ПОЛЯ
Вмороженность магнитного поля - один из эффектов, характерных для жидких и газообразных сред, обладающих высокой (в идеальном случае - бесконечной) проводимостью СУ и движущихся поперек магнитного поля (например, для жидких металлов и плазмы). В этих условиях силовые линии магнитного поля и частицы среды жестко связаны друг с другом. Можно сказать, что магнитные силовые линии как бы вморожены в среду, перемещаясь вместе с ней.
Вмороженность магнитного поля основана на том, что в идеально проводящей среде индуцируемое ее движением электрическое поле должно быть равно нулю, иначе в соответствии с законом Ома в среде возник бы бесконечный ток, что невозможно. Поэтому в силу закона электромагнитной индукции Фарадея бесконечно проходящая среда не должна пересекать силовые линии магнитного поля. Иначе говоря, магнитный поток Ф = BΔ S через поверхность Δ S, опирающуюся на произвольный контур, движущийся вместе со средой, остается постоянным. Сохранение магнитного потока приводит к тому, что движущиеся поперек магнитного поля частицы среды «тянут» за собой силовые линии магнитного поля, которые, таким образом, «вмораживаются» в среду в процессе ее движения. Вмороженность магнитного поля характерна для сред с высоким магнитным числом Рейнолдса:
|
|
, где L и - характерные масштаб и скорость течения среды соответственно, - магнитная вязкость. Если R >> 1, т.е.
то магнитное поле вморожено в среду (например, в плазму). Эти условия обычно выполняются в плазме солнечного ветра (большие L), в высокотемпературной плазме (большая )
Вмороженность магнитного поля во многих случаях позволяет, не прибегая к громоздким расчетам, с помощью простых представлений получить качественную картину течения среды и деформации магнитного поля.
? Объясните процесс «вмораживания» магнитного
поля в плазму.
? При каком условии возможна вмороженность магнитного поля в
плазму?
Задача для самостоятельного решения
6.1. Вычислите магнитное число Рейнолдса для солнечного ветра, ионосферного слоя Fi, молнии.
МАГНИТНАЯ ГИДРОДИНАМИКА И НЕУСТОЙЧИВОСТЬ
ПЛАЗМЫ
Основными методами теоретического описания плазмы являются: исследование процесса движения отдельных частиц плазмы, магнитогидродинамическое описание плазмы, кинетическое рассмотрение частиц и волн в плазме.
В разреженной плазме кулоновское взаимодействие между частицами оказывается значительно меньшим, чем влияние на них внешних электрических и магнитных полей (пример: плазма в космических условиях). В такой плазме обычно не проявляются специфически плазменные коллективные процессы, и ее можно рассматривать как совокупность отдельных частиц, движение которых определяется внешними полями.
|
|
Если концентрация частиц такова, что длины их свободных пробегов малы по сравнению с характерными размерами системы или процессы протекают с характерным временем, значительно превышающим время свободного пробега электрона или иона, то такую плазму можно описывать как сплошную среду с помощью методов обычной гидродинамики. Однако плотная плазма является «проводящей жидкостью», и ее движение, например, во внешнем магнитном поле существенно отличается от движения обычной жидкости. В самом деле:
1) если плазма движется в постоянном магнитном поле, то на ее заряженные частицы действует сила Лоренца;
2) переменное внешнее магнитное поле возбуждает в плазме
индукционные токи, которые сами создают собственное магнитное поле, в свою очередь влияющее на движение. В результате плотная плазма должна описываться совместной системой уравнений гидродинамики и электродинамики, или магнитогидродинамическими уравнениями или соотношениями.
|
|
Каковы основные результаты такого описания? Поскольку плазма может обладать весьма высокой электропроводностью, то естественно ввести модель идеально проводящей ( ) жидкости. Внешнее магнитное поле не проникает в плазму, ибо иначе в ней индуцировались бы бесконечно большие токи. В результате оно должно оказывать давление. Запишем выражение для магнитного давления, опираясь на формулу для плотности энергии магнитного поля:
(7.1)
Рассмотрим эффект самостягивающегося разряда. Если в камере, заполненной газом, происходит электрический разряд, то, во-первых, вследствие джоулевых тепловых потерь происходит ионизация газа и образование плазмы, во-вторых, собственное магнитное поле разрядного тока отрывает образовавшуюся плазму от стенок камеры и сжимает ее в тонкий шнур. Сжатие плазмы возможно, если магнитное давление по порядку величины сравнимо с тепловым давлением вещества плазмы, т.е.
Для магнитного поля прямого тока известна формула:
(7.2)
где I - сила тока, r0 - радиус шнура.
|
|
В обычных плазменных экспериментах: I ~ 105 А,
, тогда после подстановки (7.1) в (7.2) получим температуру образовавшегося плазменного шнура:
Неожиданным для исследователей явилось то обстоятельство, что плазменный шнур за чрезвычайно короткое время (~106 с) разрушался. Причина состояла в том, что плазменный шнур находился в состоянии неустойчивого равновесия. Малое внешнее возмущение (изгиб, перетяжка плазменного шнура) приводило к такому локальному изменению собственного магнитного поля тока (а значит, и магнитного давления), которое усиливало отклонение от равновесной конфигурации. Для стабилизации плазменного шнура эффективно и удобно применять сильное продольное магнитное поле. Время удержания плазмы при этом резко возрастает.
? На чем основан магнитогидродинамический метод описания плазмы?
? Расскажите о физических процессах, проходящих в самостягивающемся
шнуре.
? Напишите формулу для магнитного давления.
? Чем уравновешивается магнитное сжатие
плазменного шнура?
? Почему плазменный шнур недолговечен?
ГАЗОВАЯ (ИДЕАЛЬНАЯ) ПЛАЗМА
Как было показано в § 5, коллективность плазменных процессов проявляется при выполнении условия ND >> 1, т.е. когда в дебаевской сфере достаточно много электронов, поскольку только электроны, взаимодействуя, образуют общее поле, управляющее их движением. Этому условию можно придать и другой смысл. Внутренняя энергия плазмы состоит из энергии кулоновского взаимодействия и кинетической энергии электронов и ионов.
Среднее расстояние между частицами , энергия кулоновского взаимодействия равна . При ND >> 1 эта энергия существенно меньше энергии теплового движения, приходящейся на отдельную частицу
.
Плазма называется идеальной, или газовой, если потенциальная энергия кулоновского взаимодействия двух частиц плазмы, находящихся на среднем расстоянии друг от друга, мала по сравнению с их средней кинетической энергией теплового движения, т.е. Wp << Е k. Это условие выполняется, если в плазме достаточно велико дебаевское число ND - число частиц одного знака заряда, находящихся внутри сферы радиусом
: ND >> 1. Отличие идеальной плазмы от идеального газа связано только с той важной ролью, которую могут играть в ней коллективные взаимодействия. Термодинамические свойства идеальной плазмы хорошо описываются уравнением состояния идеального газа.
Если условие ND >> 1 не выполнено, что соответствует переходу к большим концентрациям частиц и меньшей температуре, то плазма называется неидеальной.
Плазма большинства космических объектов идеальна (в ионосфере, магнитосфере, солнечном ветре и т.д.), неидеальным является только электронный газ в очень плотном веществе звезд-белых карликов.
? Какую плазму называют идеальной?
? При каком условии существует идеальная плазма?
? В чем заключается отличие идеальной плазмы от идеального газа?
? Приведите примеры идеальной и неидеальной плазмы.
Дата добавления: 2019-07-15; просмотров: 152; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!