Раздел 2. Простейшие стационарные движения и их полуклассические квантовые модели



 

Содержание: Волны Де-Бройля в простейших замкнутых системах. Поступательное движение на ограниченном интервале. Вращение частицы по круговой орбите.

 

Эти две простые задачи будут нами рассмотрены в дальнейшем более строгими методами квантовой механики в рамках уравнения Шрёдингера. Здесь же они вводятся с двумя целями. Во-первых, для простейшего ознакомления с физическими приложениями концепции волн материи. Во-вторых, это материал для вводных практических занятий, - ещё до лекционного обсуждения основ квантовой механики.

 

Линейное движение на ограниченном интервале (потенциальный ящик).

Эта задача простейшая. Частица, движущаяся на прямолинейном интервале между двумя идеально отражающими стенками, претерпевает абсолютно упругие удары об эти стенки и отражается, изменяя лишь направление вектора скорости (импульса). Модуль же сохраняется. Возникает поступательное строго периодическое движение с постоянной скоростью. Эта модель предельно идеализированная.

Полная энергия этой частицы содержит только кинетическую составляющую. Потенциальная энергия для простоты принята равной нулю. На отрезке пути укладывается целое число полуволн Де-Бройля. Это условие, из которого вытекает квантование (дискретность) модуля импульса и энергии.

Дискретные значения полной энергии называются энергетическими уровнями или просто уровнями. Множество уровней называется энергетическим спектром данной системы. Графическое изображение энергетических уровней в масштабе называется энергетической диаграммой.

Квантование энергии и энергетическая диаграмма частицы в одномерном "ящике" получаются из следующих вычислений.

Движение частицы на круговой орбите.

 

В этой задаче вычисления так же достаточно идеалистичны, как и в предыдущей.

Физическое содержание задачи в дальнейшем неизбежно многократно обсуждается с различными смысловыми вариациями, но для этого начинающему нужна хотя бы предварительная количественная основа. Так меня учили...

Поэтому наша цель вначале не в строгости, а в возможности пусть и эклектического, "лоскутного", в какой-то мере живописного, но всё же количественного описания. Строгость выводов - потом. Итак, поскорее к цели...

Если частица движется по кругу в поле центральной кулоновской силы, создаваемой ядром с порядковым номером Z, то на замкнутой "круговой орбите" укладывается целое число волн материи 2r=n/2, "nÎN{1,2,3,...}. Следует вывод о том, что квантованной оказывается величина, похожая на модуль момента импульса: =Vr = n(h/2), "nÎN.

В качестве такого водородоподобного атома следует рассматривать многозарядный ион, у которого оставлен всего один электрон. Можно так же рассматривать и атом позитрония. Это электрон-позитронная пара до аннигиляции...

Центростремительная сила, удерживающая частицу на круговой орбите, имеет кулоновскую природу, и из баланса этих сил получается "теорема вириала", определяющая взаимосвязь между кинетической и потенциальной энергиями в поле центральной силы 2T=-U. По этой теореме кинетическая энергия равна половине потенциальной, но с положительным знаком, а полная энергия равна половине потенциальной E=U/2 и также отрицательна E=-Ze2/2r. Простейшие расчёт показывают, что возможные значения радиуса классической "орбиты" дискретны – квантованы r=(n2/Z)(h/2)2/(mee2). Соответственно квантованы и значения полной энергии. Результирующее выражение для дискретных энергетических уровней называется формулой Бора.

Приведём всю сводку вычислений, а комментарий к ним только что был дан выше:

 

 

Для корректных расчётов свойств системы, состоящей из двух взаимно обращающихся частиц с конечными массами следует использовать общую приведённую массу. Приведённая масса  системы электрона и протона учитывает их обращение вокруг общего центра масс и мало отличается от массы электрона. Она равна

= eMp /( e+Mp)=1840/1841

Введя приближение e<<Mp , можно принять =e.

Формула Бора и выражение для боровского "радиуса" корректно выводятся из решения уравнения Шрёдингера для атома H. Квантово-механический вывод логически строен, но это достигается за счёт резкого усложнения математической стороны задачи. Величина a0=0.529 Ao называется боровским радиусом. В полуклассической квантовой теории он считается радиусом первой круговой орбиты, на которой электрон движется в основном квантовом состоянии, но эта примитивная картина неверна и её содержание будет изменено в квантовой механике. Её истинный смысл вероятностный. Он выявляется лишь из квантово-механического анализа свойств атома H. Боровский радиус есть не что иное, как расстояние наиболее вероятного удаления электрона от ядра на низшем энергетическом уровне - в основном состоянии атома.


Дата добавления: 2019-07-15; просмотров: 205; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!