Закони Стефана-Больцмана й Вина



РЕФЕРАТ

на тему:”Квантова природа випромінювання”

 

 


План

 

1. Теплове випромінювання і його характеристики

2. Закон Кірхгофа

3. Закони Стефана – Больцмана і Віна

4. Формула Планка. Виведення законів Стефана - Больцмана і Віна

5. Зовнішній фотоефект. Ефект Компотна

 


Теплове випромінювання і його характеристики

Тіла, які нагріті до досить високих температур, світяться. Світіння тіл, яке обумовлене нагріванням, називається тепловим випромінюванням. Теплове випромінювання є найбільш поширеним в природі і відбувається за рахунок енергії теплового руху атомів і молекул речовини. Теплове випромінювання властиве всім тілам, які мають температуру, вищу за 0К. Теплове випромінювання має суцільний спектр частот, положення максимуму якого залежить від температури. При високих температурах випромінюються ультрафіолетові й видимі електромагнітні хвилі, при більш низьких температурах - переважно інфрачервоні хвилі.

Сьогодні відомі кілька видів випромінювань. Серед них - фотолюмінісценція (спочатку енергія поглинається, а потім випромінюється); хемілюмінесценція - енергія звільняється у вигляді випромінювання за рахунок хімічних реакцій; електролюмінісценція - свічення розріджених газів в електричних полях і теплове випромінювання - випромінювання нагрітих тіл. Теплове випромінювання - практично єдиний вид випромінювання, яке може бути рівноважним. Припустимо, що нагріте (випромінююче) тіло поміщене в порожнину, обмежену ідеальною не відбиваючою оболонкою. З часом, у результаті безперервного обміну енергією між тілом і випромінюванням наступить рівновага, тобто тіло в одиницю часу буде поглинати стільки ж енергії, скільки й випромінювати. Якщо рівновага між тілом і випромінюванням з якої-небудь причини буде порушена то тіло випромінює енергії більше, ніж поглинає. Якщо в одиницю часу тіло більше випромінює, ніж поглинає (або навпаки), то температура тіла почне знижуватися (або підвищуватися). У результаті буде послаблятися (або зростати) кількість випромінюваної тілом енергії, доки, нарешті, не встановиться нова рівновага. Всі інші види випромінювання неврівноважені.

Кількісною характеристикою теплового випромінювання є його енергетична світимість - потужність випромінювання з одиниці площі поверхні тіла в інтервалі частот одиничної ширини:

 

 (1)

 

де  – енергія електромагнітного випромінювання, яка випускається за одиницю часу з одиниці площі поверхні тіла в інтервалі частот від  до . Одиницею енергетичної світимості є джоуль на метр у квадраті в секунду (Дж/(м 2с).

Енергетична світимість тіла може бути виражена також через функцію довжини хвилі, оскільки

 

. (2)

 

Так як  то , тому

 

. (3)

 

Знак мінус у виразі  вказує на те, що із зростанням однієї з величин (  або ) інша величина зменшується.. Тому надалі знак мінус будемо опускати.

Знаючи енергетичну світимість на кожній спектральній ділянці, можна обчислити інтегральну випромінювальну здатність тіла на всіх частотах, але при певній температурі:

 (4)

 

Здатність тіл поглинати падаюче на них випромінювання характеризується поглинальною здатністю, яка дорівнює

 

, (5)

 

де показано, яка частина енергії, принесеної за одиницю часу на одиницю площі поверхні тіла падаючими на неї електромагнітними хвилями  із частотами від  до , поглинається тілом . Поглинальна здатність тіла — величина безрозмірна.

Тіло, яке здатне поглинати повністю при будь-якій температурі все падаюче нанього випромінювання будь-якої частоти, називається абсолютно чорним. Отже, поглинальна здатність абсолютно чорного тіла для всіх частот і температур дорівнює одиниці ( ). Абсолютно чорних тіл у природі немає, однак такі тіла, як сажа, платинова чернь, чорний оксамит і деякі інші, у певному інтервалі частот за своїми властивостями близькі до них.

Ідеальною моделлю абсолютно чорного тіла є замкнута порожнина з невеликим отвором (рис. 1), внутрішня поверхня якої покрита чорною фарбою. Промінь світла, що потрапив усередину такої порожнини, багаторазово буде відбиватися від стінок, у результаті чого інтенсивність практично зменшується до нуля.

 

Рис. 1


Досліди показують, що при розмірі отвору, меншому 0,1 діаметра порожнини, падаюче випромінювання на всіх частотах практично «повністю поглинається». Внаслідок цього відкриті вікна будинків з боку вулиці завжди виглядають чорними, хоча усередині кімнат досить світло через відбивання світла від стін.

Поряд з поняттям абсолютно чорного тіла використовують поняття сірого тіла — тіла, поглинальна здатність якого менша одиниці, але однакова для всіх частот і залежить тільки від температури, матеріалу й стану поверхні тіла. Таким чином, для сірого тіла .

Дослідження теплового випромінювання зіграло важливу роль у створенні квантової теорії світла, тому необхідно розглянути закони, яким воно підпорядковується.

 

Закон Кірхгофа

 

Кірхгоф, аналізуючи умови рівноважного випромінювання в ізольованій системі тіл, встановив кількісний зв'язок між спектральною густиною випромінювальної здатності й спектральною поглинальною здатністю тіл. Відношення спектральної густини випромінювальної здатності тіла до спектральної поглинальної здатності не залежить від природи тіла; воно є для всіх тіл універсальною функцією частоти (довжини хвилі) і температури

 

                                                          (6)

 

Вираз (6) дістав назву закону Кірхгофа. Оскільки для абсолютно чорного тіла , то із закону Кірхгофа (6) випливає, що  для абсолютно чорного тіла дорівнює . Таким чином, універсальна функція Кірхгофа  є не що інше як спектральна густина випромінювальної здатності абсолютно чорного тіла. Отже, відповідно до закону Кірхгофа, для всіх тіл у природі відношення спектральної густини випромінювальної здатності до спектральної поглинальної здатності дорівнює спектральній густині випромінювальної здатності абсолютно чорного тіла при тій же температурі й частоті.

Із закону Кірхгофа треба усвідомити, що спектральна густина випромінювальної здатності будь-якого тіла в будь-якій області спектра завжди менша спектральної густини випромінювання абсолютно чорного тіла (при тих же значеннях Т и ν), так як  й . Крім того, з (6) випливає, що якщо тіло не поглинає електромагнітних хвиль якоїсь частоти, то воно їх і не випромінює.

Використовуючи закон Кірхгофа, вираз для інтегральної випромінювальної здатності тіла (4) можна записати так

 

 (7)

 

Для сірого тіла

 

 (8)

 

де

 

 (9)

 

Якщо випромінювання не підпорядковується закону Кірхгофа, то воно не є тепловим.

Закони Стефана-Больцмана й Вина

В законі Кірхгофа (6) стверджується, що спектральна густина випромінювальної здатності абсолютно чорного тіла є універсальною функцією, тому знаходження її явної залежності від частоти й температури є важливим завданням теорії теплового випромінювання.

Аналізуючи експериментальні дані, вчені И. Стефан і Л. Больцман, застосовуючи лише термодинамічний метод, розв’язали це завдання лише частково, установивши залежність інтегральної випромінювальної здатності абсолютно чорного тіла Re від температури. Цей закон дістав назву закону Стефана - Больцмана,

 

 (10)

 

тобто інтегральна випромінювальна здатність абсолютно чорного тіла пропорційна термодинамічній температурі в четвертому ступеню. Тут  - постійна Стефана - Больцмана. Експериментальне значення постійної Стефана-Больцмана дорівнює

 

 

Закон Стефана — Больцмана, визначаючи залежність Re від температури, не дає відповіді щодо спектрального складу випромінювання абсолютно чорного тіла. Експериментальні криві залежності функції  від довжини хвилі λ при різних температурах показані на (рис. 2). Криві мають явно виражений максимум, який в міру підвищення температури зміщується убік більш коротких хвиль.

 

Рис. 2

 

Площа, обмежена кривою залежності  від λ пропорційна інтегральній випромінювальній здатності Re абсолютно чорного тіла й, за законом Стефана — Больцмана, четвертому ступеню температури.

Німецький фізик В. Він, спираючись на закони термодинаміки й електродинаміки, установив залежність довжини хвилі λ, на яка припадає максимум функції ,від температури Т. Відповідно до цього закону

 

 (11)

 

де b — постійна Вина, її експериментальне значення дорівнює 2,9 · 10-3 мК. Вираз (11) називають законом зміщення Віна, так як він показує зсув положення максимуму функції  в міру зростання температури в області коротких довжин хвиль. Закон Віна пояснює, чому при зниженні температури нагрітих тіл у їх спектрі усе сильніше переважає довгохвильове випромінювання (наприклад, перехід білого кольору випромінювання в червоний при охолодженні металу).

Незважаючи на те що закони Стефана - Больцмана й Віна мають у теорії теплового випромінювання важливу роль, вони не відносяться до фундаментальних законів, тому що не дають загальної картини розподілу енергії випромінювання за частотами при різних температурах.

Формула Планка. Виведення законів Стефана-Больцмана й Віна

Значення спектральної випромінювальної здатності абсолютно чорного тіла було знайдено німецьким фізиком М. Планком у 1900 р. Для цього йому довелося відмовитися від одного із основних положень класичної фізики, відповідно до якого енергія будь-якої випромінювальної системи може змінюватися неперервно, тобто приймати довільні –значення. Відповідно до висунутої Планком квантової гіпотези, атомні осцилятори випромінюють енергію не безупинно, а певними порціями – квантами, причому енергія кванта пропорційна частоті коливання:

 

 (12)

 

де  – стала Планка.

Так як енергія випромінювання випускається порціями, то енергія осцилятора ε може приймати лише певні дискретні значення, кратні цілому числу елементарних порцій енергії ε0:

 

 (n= 0,1,2,…)

 

Використовуючи статистичні методи й квантовий характер теплового випромінювання, М. Планк вивів формулу універсальної функції Кірхгофа

 

 (13)

 

яка блискуче погоджується з експериментальними даними розподілу енергії в спектрах випромінювання абсолютно чорного тіла у всьому інтервалі частот від 0 до ∞ і при різних температурах. Теоретичний зміст цієї формули М. Планк розповів 14 грудня 1900 р. на засіданні Німецького фізичного гуртка. Цей день став датою народження квантової фізики.

Використовуючи формулу Планка можна одержати закон Стефана — Больцмана. Згідно (9)

 

 

Введемо позначення х = hv/(kТ), звідки  Тут k- стала Больцмана, яка дорівнює 1,38.10-23 Дж/К. З урахуванням цих позначень інтегральна випромінювальна здатність абсолютно чорного тіла Re, буде дорівнювати

 

 (14)

 

де  так як

Таким чином, дійсно формула Планка дозволяє одержати закон Стефана – Больцмана. Крім того, підстановка числових значень k, с и h дає для постійної Стефана – Больцмана величину, яка добре погоджується з експериментальними даними.

Закон зміщення Віна одержимо за допомогою формули (3) і (13):

 

. (15)

Досліджуємо вираз (15) на максимум, здійснивши попередньо такі заміни:

 

, звідки .

 

Підставимо ці заміни в (15), одержимо

 

. (16)

 

Похідну від (16) прирівняємо до нуля , одержимо

 

,

 

звідки

 

 або

 

Розв’язавши останнє трансцендентне рівняння графічним способом рис.3, знайдемо значення змінної величини x, при якій функція (16) досягає максимуму x=4965.


Рис. 3

 

Отже,

 

 

звідки

 

,

 

тобто, ми одержали закон зміщення Віна.

Таким чином, формула Планка не тільки добре погоджується з експериментальними даними, але й містить у собі дослідні закони теплового випромінювання, а також дозволяє обчислити постійні в законах теплового випромінювання. Отже, формула Планка є повним розв’язком основного завдання теплового випромінювання, поставленого Кірхгофом. Його розв’язування стало можливим лише завдяки революційній квантовій гіпотезі Планка.


Дата добавления: 2019-07-15; просмотров: 222; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!