Собственные значения и собственные векторы



Реферат

Тема: «Линейные системы уравнений»

 


Содержание

1. Уравнения, векторы, матрицы, алгебра

2. Умножение матриц как внешнее произведение векторов

3. Нормы векторов и матриц

4. Матрицы и определители

5. Собственные значения и собственные векторы

6. Ортогональные матрицы из собственных векторов

7. Функции с матричным аргументом

8. Вычисление проекторов матрицы

Пример использования числовых характеристик матриц

10. Оценка величины и нахождение собственных значений

Литература

 


Уравнения, векторы, матрицы, линейная алгебра

 

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

 

 

Здесь  – неизвестные,

 – заданные числа,

 – заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:

список переменных – ,

список правых частей –  и

 

матрицу коэффициентов – .

 

Первые два объекта в линейной алгебре называют вектором-строкой, а второй – квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: ,  – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.

Если рассмотреть i-тую строку исходной системы

 

,


то в ней кроме упорядоченного расположения компонент  присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

 

.

 

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.

Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

 

 

или

 

.

 

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде  несложно определить векторно-матричную операцию , результатом которой является вектор с i-той компонентой, равной .

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

 

Умножение векторов и матриц

 

Среди n-мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:

 

,

 

которая при произвольном выборе  в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми. Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j-строке.

Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n-мерную систему координат. Набор компонент любого вектора в этой n-мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.

Среди матриц размера  и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y. Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x. Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

 

.

 

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

 

,

 

где  – элемент матрицы С, равный скалярному произведению вектор-строки  матрицы В на вектор-столбец  матрицы А.

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

 

Нормы векторов и матриц

 

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:

 

,

 

где  – компоненты вектора ,

 – евклидова норма вектора, его длина.

В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.

Деление вектора на величину его нормы называют нормированием, т.е. приведением вектора к единичной длине.

Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то

 

,

 

где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x, кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству

 

.

 

Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.

 

Матрицы и определители

 

Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:

 

 

Учитывая это свойство и зная, что определитель единичной матрицы det(E)=1, можно найти матрицу B и ее определитель из уравнения:

 

 

откуда следует, что  и .

 

Из свойств определителей нелишне помнить и такие:

 

где  – транспонированная матрица A,

n – размер квадратной матрицы A,

 – матрица перестановки строк или столбцов,

s, c=0,1,…, n – число выполненных перестановок строк и / или столбцов.

Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:

 


Умножив вектор правых частей на обратную матрицу, получим вектор решения.

Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:

 

,

 

где  – алгебраическое дополнение, а  – минор матрицы A, получаемый вычислением определителя матрицы A, в которой вычеркнуты j-тая строка и i-тый столбец.

Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.

Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.

 

Собственные значения и собственные векторы

 

Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.

Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:

 

 

В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром  и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.

Полагая, что решение все же существует, т.е.  и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:

 

 

Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно :

 

 

Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы. Относительно n корней различают два случая: все корни различные или некоторые корни кратные.

Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:

 

 

где  – k-тая степень матрицы.

Подставляя каждое  в однородную систему, получим векторно-матричные уравнения для нахождения векторов  или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.

Решение однородных уравнений имеет некоторую специфику. Если  (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:

 

 

Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что


 


Дата добавления: 2019-07-15; просмотров: 173; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!