Труды М.Фарадея по постоянному току
Истоки современной электротехники восходят к замечательным трудам английского ученого Майкла Фарадея, которые, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений.
Фарадея для науки открыл Хэмфри Дэви. Он очень много дал Фарадею, который признавал роль учителя в своем становлении как ученого. Многие работы Фарадея как бы логически вытекали из работ или идей Дэви.
Остановимся на законах электролиза, которые он открыл уже после смерти учителя, базируясь на теории Дэви, развитой Берцелиусом и другими известными учеными. Но количественных закономерностей изменений, происходящих в растворе, никто установить не смог. А звучат законы настолько просто, что диву даешься, как их не смогли сформулировать маститые ученые.
Количество разложенного при электролизе вещества увеличивается пропорционально силе тока и времени его прохождения.
Количество выделенных на электродах веществ пропорциональны их химическим эквивалентам.
Но законы не только позволили вести количественные расчеты. Благодаря законам Фарадея стало возможным сделать вывод "об электрической природе материи и об атомном строении электричества, на которых зиждется все современное материалистическое естествознание".
Д. Максвелл писал: "Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды (т.е. заряды – с современной точки зрения), Фарадей искал сущность реальных явлений, протекающих в среде".
|
|
Нет нужды повторяться о той огромной роли, которую сыграл Дэви в судьбе Фарадея. Но рассказ будет неполным и искаженным, если мы упустим некоторые факты взаимоотношений учителя и ученика. Когда в 1823 г. Фарадей опубликовал несколько работ, связанных с проблемами химии, Дэви, напечатавшего всего одну статью за год, это задело за живое. Кроме того, ученые все больше ссылались в своих работах на Фарадея, а не на его учителя. Кончилось тем, что когда Фарадей подал заявление о приеме его в члены Королевского общества, президент сэр Хэмфри Дэви выступил против. Правда, Дэви одумался, и Фарадея в следующем году почти единогласно избрали членом Королевского общества (один голос против).
В 1834 г. Фарадей в работе "Об электрохимическом разложении" предложил ввести новую терминологию. И на этот раз, как и все, что выходило из-под пера Фарадея, терминология была проста, научно обоснованна и понятна: Электролиты, ионы (путешественники), катионы (к отрицательному полюсу), катод (путь вниз), анод (путь вверх) и соответственно, анионы. Это был вклад в основу единого языка и международного сотрудничества. Справедливо говорил Бульвер-Литтон, английский писатель: "Гений творит то, что он должен, талант – то, что может".
|
|
Знаменитый опыт Фарадея с тороидальным сердечником из мягкого железа и двумя обмотками, соединенными одна через ключ с батареей, другая с гальванометром, известен всем со школьной скамьи.
Явление электромагнитной индукции воспринимали, как открытие нового вида электричества - "магнитоэлектричества". Фарадей решил окончательно доказать, что в природе не существует разных "электричеств". Для этого он получил восемь различных действий от пяти видов "электричества" (обыкновенного, гальванического, животного, термоэлектричества и магнитоэлектричества). Следующая серия исследований Фарадея была посвящена электрохимическим явлениям. Он предложил и ныне принятую терминологию: электролиз, электрод, катод, анод, анион, катион.
Электролиз (от электро... и греч. lysis - разложение, растворение, распад), совокупность процессов электрохимического окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Электролиз лежит в основе электрохимического метода лабораторного и промышленного получения различных веществ - как простых (электролиз в узком смысле слова), так и сложных (электросинтез).
|
|
Изучение и применение электролиза началось в конце 18 - начале 19 вв., в период становления электрохимии. Для разработки теоретических основ электролиза большое значение имело установление М. Фарадеем в 1833-34 точных соотношений между количеством электричества, прошедшего при электролизе, и количеством вещества, выделившегося на электродах.
Промышленное применение электролиза стало возможным после появления в 70-х гг. 19 в. мощных генераторов постоянного тока.
Особенность электролиза - пространственное разделение процессов окисления и восстановления: электрохимическое окисление происходит на аноде, восстановление - на катоде. электролиз осуществляется в специальных аппаратах - электролизёрах.
Электролиз происходит за счёт подводимой энергии постоянного тока и энергии, выделяющейся при химических превращениях на электродах. Энергия при электролизе расходуется на повышение гиббсовой энергии системы в процессе образования целевых продуктов и частично рассеивается в виде теплоты при преодолении сопротивлений в электролизёре и в других участках электрической цепи.
|
|
На катоде в результате электролиза происходит восстановление ионов или молекул электролита с образованием новых продуктов. Катионы принимают электроны и превращаются в ионы более низкой степени окисления или в атомы, например при восстановлении ионов железа (F3+ +e = Fe2+), электроосаждении меди (Cu2+ + 2e = Cu). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с промежуточными продуктами катодного процесса. На аноде в результате электролиза происходит окисление ионов или молекул, находящихся в электролите или принадлежащих материалу анода (анод растворяется или окисляется), например: выделение кислорода (4OH- = 4e + 2H2O + O2) и хлора (2C1- =2e + Cl2), образование хромата (Cr3+ + 3OH- + H2O = CrO42- + 5H+ + 3e), растворение меди (Cu = Cu2+ + 2e), оксидирование алюминия (2Al + 3H2O = Al2O3 +6Н+ + 6e).
Электрохимическая реакция получения того или иного вещества (в атомарном, молекулярном или ионном состоянии) связана с переносом от электрода в электролит (или обратно) одного или нескольких зарядов в соответствии с уравнением химической реакции. В последнем случае такой процесс осуществляется, как правило, в виде последовательности элементарных одноэлектронных реакций, то есть постадийно, с образованием промежуточных ионов или радикальных частиц на электроде, часто остающихся на нём в адсорбированном состоянии.
Скорости электродных реакций зависят от состава и концентрации электролита, от материала электрода, электродного потенциала, температуры и ряда других факторов. Скорость каждой электродной реакции определяется скоростью переноса электрических зарядов через единицу поверхности электрода в единицу времени; мерой скорости, следовательно, служит плотность тока.
Были установлены соотношения между весами различных веществ, выделяемых на электродах при пропускании одного и того же количества электричества, связь между химическими и электрохимическими эквивалентами. При этом Фарадей пришел к выводу о необходимости ввести понятие "абсолютного количества электричества" - заряда грамм-атома одновалентного вещества, названного потом "числом Фарадея".
Количественные законы электролиза, открытые М. Фарадеем (1833 – 34) выражают связь между количеством прошедшего через электролит электричества, массой и химической природой (через эквиваленты химические) веществ, претерпевших превращение на электродах,
1-й закон.: массы т превращенных веществ пропорциональны количеству электричества q, прошедшего через электролит,
2-й закон.: массы различных веществ, превращенных в результате прохождения через электролит одного и того же количества электричества, пропорциональны химическим эквивалентам А этих веществ.
Из второго закона Фарадея следует, что для выделения электрическим током 1 г-экв. различных веществ необходимо одно и то же количество электричества, называемое Фарадея числом F. Математически законы Фарадея можно записать в виде одного уравнения т = (A/F) q = kq (коэффициент k = A/F называется электрохимическим эквивалентом).
Оба закона Фарадея абсолютно точны, если ионами электролита переносится всё прошедшее через него количество электричества. Наблюдаемые в некоторых случаях отклонения от этих законов могут быть связаны с неучтенными побочными электрохимическими реакциями (например, выделение газообразного водорода при электроосаждении некоторых металлов) или с частичной электронной проводимостью (например, при электролизе некоторых расплавов).
Не будучи сторонником теории о существовании неделимых атомов, он открыл путь к введению понятия атома электричества (заряда электрона) и, таким образом, к мысли о сложности строения самого атома. Величина заряда электрона определяется, как известно, делением числа Фарадея на число Авогадро.
Дата добавления: 2019-07-15; просмотров: 404; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!