ЕЛЕМЕНТИ НАВЧАЛЬНОГО ПОСІБНИКА



 

Вчитель повинен активізувати мотивацію учнів до вивчання фізики. Найкращим способом мотивації є надання дітям тієї інформації, яка їм буде цікава, тому вчителю потрібно з’ясувати, що саме може зацікавити дітей.

У вік глобальної комп’ютеризації та Інтернету, комп’ютер стає невід’ємною частиною повсякденного життя кожної людини, особливо більш молодше покоління. Якщо розглянути окремі складові частини такої електронної техніки, як сучасна електронно-обчислювальна машина, то можна спробувати роз’яснити учням фізичні принципи роботи цих елементів та фізичні явища, які можна спостерігати при їх роботі.

Викладаючи за програмою матеріал з фізики, вчитель повинен:

1. якісно викладати матеріал;

2. пояснювати практичну та пізнавально-розвиваючу сторону цього предмету на уроках;

3. займатися розвитком учнів під час позакласних занять.

Зараз спостерігається тенденція зменшення годин викладання фізики у школі при зростанні об’єму матеріалу, який учень повинен засвоїти, тому вирішенням проблеми розвиваючої складової навчання може стати саме позаурочна робота з фізики.

Серед усіх видів позакласної роботи з учнями, найкращим до засвоєння цікавого матеріалу підходять факультативні заняття з фізики та заняття в гуртках. Для проведення позаурочних занять з фізики можна використати науково-популярний матеріал, щодо будови і принципу роботи окремих частин комп’ютерної техніки, та пояснити їх роботу за допомогою фізики. Для цього вчителеві необхідно зібрати та систематизувати цікавий, добре підібраний матеріал, який можна використовувати на позаурочних заняттях. Цей матеріал повинен йти як логічне завершення викладання основного курсу фізики; це залежить від відведеного часу для проведення позаурочних занять та, насамперед, майстерності вчителя. Такий підхід навчання та загального розвитку учнів також сприятиме їх самостійній роботі з науково-популярною літературою.

 

Дисплеї

Дисплей електронно-променевий

ДЕП (рис. 2.1) містить: три електронні пушки, що емітують три променя електронів; котушку, що відхиляє промені в горизонтальному і вертикальному напрямках; маску для точного попадання променів у потрібні точки екрана; екран, що складається з «пікселів» (точок). Піксель містить три елементи, кожний з яких під впливом променя світиться червоним, жовтим і зеленим кольором.

 

 

 

 


Рисунок 2.1 – Принципова схема електронно-променевого дисплея

 

ДЕП (рис. 2.1) містить: три електронні пушки, що емітують три променя електронів; котушку, що відхиляє промені в горизонтальному і вертикальному напрямках; маску для точного попадання променів у потрібні точки екрана; екран, що складається з «пікселів» (точок). Піксель містить три елементи, кожний з яких під впливом променя світиться червоним, жовтим і зеленим кольором.

Принцип дії: комп'ютер управляє інтенсивністю електронних променів, що потрапляють на кожен піксель. Залежно від інтенсивності кожного з кольорів сумарний колір пікселя може мати 16 мільйонів градацій.

Характеристики: Розподіл — кількість пікселів на екрані по горизонталі і по вертикалі. В даний час від 640/480 до 2048/1536. Крок пікселя — відстань між пікселями по горизонталі і по вертикалі. Залежно від розподілу і розміру екрана від 0,14 до 0,67 мм [9].

 

Дисплей плоский

Відомо декілька типів: на світлодіодах, плазмові, люмінесцентні, рідкокристалічні (РК). Розглядається тільки останній тип як найпоширеніший – РК (рис. 2.2).

Призначення: те ж, що і ДЕП – представляти зображення у вигляді, що сприймається зором (рис. 2.3) .

 

 

 

 


                                                                                         

                                                                                             

 

 

Рисунок 2.2 – Принцип дії рідкого кристалу

 

 

 


Рисунок 2.3 – Схема роботи рідкокристалічного дисплея


Принцип дії: комп'ютер подає напруги на пари електродів тих РК (рис. 2.4), які повинні стати прозорими. В результаті на екрані утворюється зображення з вибраних пікселів вибраного кольору [9].

 

 

Рисунок 2.4 – Схема розташування пікселя на дисплеї

 

Характеристики: роздільна здатність — кількість пікселів на екрані по горизонталі і по вертикалі. В даний час від 1024/768 до 1600/1200.

Особливості: дорогі (у 2-3 рази дорожче ДЕП); власне дисплей споживає мало енергії, але потрібне підсвічування, що вимагає значної потужності; критичні до температури: не функціонують при  .

Погрішності дисплеїв (див. табл. 2.1) обумовлені принципом створення зображення точками (пікселями). Значення інструментальної погрішності при представленні результату вимірювання графічно дорівнює значенню пікселя. Абсолютна погрішність дорівнює кроку пікселя, відносна – величина, зворотна розподілу.

Наприклад. При роздільній здатності 640/480 по горизонталі  , по вертикалі  [9].

 


Таблиця 2.1 – Співвідношення наведених погрішностей комп'ютерних вимірювань для дисплея

Дисплей

Роздільна здатність, піксель Погрішність g, %
 640 0,15
800 0,12
1280 0,08

 

Процесори

 

Процесор в сучасному комп'ютері часто виступає синонімом всього ПК. На питання: «Який у вас комп'ютер?» з очевидністю йде відповідь – «четвертий Pentium» або «Athlon 64», частота така-то... До речі, такому відношенню до ЦП немало сприяла кампанія Intel Inside, що почалася ще в 1993 році.

Центральний процесор – вінець технологічних досягнень людини. З простої жмені піску люди навчилися створювати кристали (рис. 2.5) розміром з ніготь, здатні виконувати мільярди обчислень за секунду. Не дивлячись на складність архітектури самого процесора, він складається з простої «цегли» – транзисторів, своєрідних перемикачів. Працює транзистор так: якщо на замикаючому затворі немає напруги, елемент не проводить струм. Коли ж напруга до затвора прикладається, транзистор «відкривається» і сам стає провідним. А далі їх починають комбінувати: адже транзистор, що «відкрився», здатний пропустити струм до затвора іншого транзистора і, у свою чергу, вплинути на його поведінку. Такі комбінації ускладнюються, а з елементарних поєднань будуються величезні блоки. Ускладнюється і їх поведінка. У сучасних процесорах присутні сотні мільйонів транзисторів, що працюють в тісному зв'язку один з одним. Далі ми зупинимося на ключових особливостях процесорів, які визначають їх швидкість і можливості [7].

Рисунок 2.5 – Зовнішній вигляд пластини кристалу з нанесеною на нього літографією

Техпроцес

Ми спеціально згадали про транзистори, оскільки вони пов'язані з важливою характеристикою процесора – так званим «технічним процесом». Він має розмірність довжини і вимірюється в нанометрах (на даний момент – 130,90 або 65 нм). А щоб зрозуміти, звідки він береться, давайте подивимося, як з'являється на світ окремо взятий процесор.

Спочатку з кремнієвого піску вирощують циліндричний кристал з діаметром основи 20-30 см і розрізають його на тонкі круглі пластини – вони стануть основою для майбутніх процесорів. Пластини полірують, а потім за допомогою фотолітографії наносять на них транзистори і інші компоненти. На кожній пластинці розміщується декілька сотень процесорів. Потім їх вирізають, наносять шари алюмінієвих або мідних з'єднань, що зв'язують транзистори і ділянки кристала. Нарешті, «насаджують» готовий процесор на упаковку, тестують і продають.

Протягом багатьох років технологи провідних фірм працювали над тим, щоб зменшити розмір транзисторів. Адже чим він менший, тим, взагалі кажучи, краще. Транзистор меншого розміру вимагає меншої напруги, знижуючи споживання енергії. Чим менше транзистори, тим більше їх можна розташувати на поверхні кристала. Нарешті, процесори, створені на транзисторах менших розмірів, краще розганяються. Така важлива величина не могла не отримати окремої назви. Власне, техпроцес – це і є характерний розмір одного транзистора.

Це цікаво: спочатку зменшення техпроцесу йшло досить успішно. Удосконалювалися технології вирощування кристалів, досягався вищий клас поліровки, все більш ускладнювалося устаткування фотолітографії. Але незабаром компанії-виробники зіткнулися з тим, що впритул підійшли до обмежень самого матеріалу: як-не-як, комірка кристалічної решітки має свій розмір, яким вже давно не можна нехтувати. Так, при 90-нанометровому техпроцесі затвор транзистора складається всього з п'яти атомних шарів діелектрика (SiO ), а при 65-нанометровому – з трьох-чотирьох. Далі зменшувати нікуди: ніякий діелектрик не в силах запобігти тунелювання електронів крізь такий тонкий бар'єр. Кремній відпрацював своє. Можна з упевненістю сказати, що наступні планки – 45 і 30 нм – можна буде здійснити з використанням інших матеріалів. Силікат нікелю? Вуглецеві нанотрубки? Поживемо – побачимо [7].

 

Розмір КЕШа

Схематично уявити собі роботу процесора досить просто. Він прочитує дані з пам'яті, обробляє їх і записує назад в пам'ять. Все! Швидкість другого етапу залежить від архітектури процесора, а ось перший і третій етапи – від продуктивності пам'яті. І тут проблеми є. У 80-х роках минулого століття процесори були відносно повільними, і пам'ять встигала їх обслуговувати. З часом швидкість ЦП стрімко росла, тоді як пам'ять розвивалася помітно повільніше. А якщо так, то який сенс у потужному процесорі, якщо він своєчасно не отримуватиме дані?

Для розв’язання проблеми додали швидкісну пам'ять, яка відіграє роль буфера між процесором і оперативною пам'яттю, – кеш-пам'ять. Вона застосовується для зберігання найбільш часто використовуваних даних, щоб скоротити число повторних звернень до «повільної» пам'яті. Кеш ділиться на декілька рівнів, але найчастіше доводиться стикатися з кешем другого рівня (L2). У найпростіших процесорів він складає 128-256 кбайт, у потужніших – 1-2 Мбайт.

 

Тактова частота

Раніше, вибираючи процесор, користувачі звертали увагу лише на частоту. І, загалом, цілком закономірно – до недавнього часу саме вона в першу чергу визначала швидкість роботи всієї системи. За останні десять років цей параметр виріс з 100 МГц до 3,8 ГГц. Чим вище тактова частота, тим швидше перемикаються транзистори, тим більше обчислень виконує процесор за одиницю часу. Оборотна сторона медалі – більше виділення тепла.

Ми звикли вважати, що чим вище частота процесора, тим краще. Intel засвоїла урок і випустила Pentium 4. Його архітектура була «заточена» під можливість збільшення частот до немислимих раніше величин. Але в 2005 році компанія відійшла від минулих гасел...

Причин тому велика кількість, адже продуктивність можна збільшити не тільки шляхом нарощування частот, є і інші шляхи. Розширити кеш-пам'ять, функціональні блоки, інструкції, удосконалити архітектуру. А ось з останнім були проблеми. Архітектура NetBurst опинилася не такою ефективною в плані продуктивності. За один такт Pentium 4 виконує менше роботи, чим Athlon 64. Саме тому сьогодні 2-гігагерцовий Athlon легко перемагає 3-гігагерцовий Pentium. Порівнювати Athlon і Pentium за тактовою частотою вже безглуздо.

Щоб було простіше орієнтуватися в моделях, AMD застосувала систему рейтингів (іноді це називалося «пентіум-рейтингом», як би гіпотетичною продуктивністю процесора Pentium аналогічної частоти). Наприклад, при рейтингу 4000+ фактична частота Athlon'a складає 2,4 ГГц.

Що ж до Intel, то після переходу на 90-нм техпроцес компанія не змогла далі підвищувати частоту. У результаті про випуск 4-ГГц процесора довелося забути, заразом звернути програму рекламування мегагерц, і ввести... модельні номери, як AMD зробила декількома роками раніше.

Вибравши архітектуру (Pentium 4/D або Athlon 64/64 Х2), залишається визначитися з частотою. Тут важливо мати на увазі, що приріст продуктивності не прямо пропорційний зростанню частоти, а декілька менше. Порівняємо, допустимо, процесори Pentium 4 630 (3,0 ГГц) і Pentium 4 660 (3,6 ГГц). Вибравши другий замість першого, ви отримаєте збільшення частоти всього на 20 %, а приріст продуктивності і того менше – 5-15 %! Зате заплатите удвічі більше. Чи треба? На наш погляд, нетреба: набагато важливіше підібрати потужнішу відеокарту або зайвий гігабайт пам'яті [7].

До уваги: висока тактова частота потрібна при кодуванні звуку і відео в реальному часі, частково в іграх. Для офісних програм, фільмів і музики цей показник на сьогоднішній день практично не грає ролі. Комп'ютер буде лише даремно споживати енергію. Для вирішення цієї проблеми навіть існують технології, що динамічно знижують частоту і напругу при низьких навантаженнях. У AMD технологія називається Cool'n'Quiet і здатна зменшувати частоту до 1 ГГц, у Intel є SpeedStep, але частоту вона зменшує всього до 2,8 ГГц.

 

Два ядра і Hyper-Threading

Якщо частота – це не «наше все», то як ще можна збільшувати продуктивність? Найкардинальнішим рішенням виявилося збільшення числа ядер. Купивши двоядерний процесор, ми отримуємо два процесори в одному комп'ютері. Intel’овська технологія Hyper-Threading працювала схожим чином.

Два процесори в комп'ютері – ідея не нова, але тільки в 2005 році ми отримали подібні продукти. В принципі, всі переваги і недоліки традиційних двопроцесорних систем перенеслися і на двоядерні.

Почнемо з багатозадачності. Сучасні операційні системи підтримують роботу декількох програм. Як це забезпечується? Адже ЦП може виконувати тільки одну програму цієї миті. Все просто: програми виконуються по черзі. Якщо ви граєте, а у фоні працює антивірус, то гра непомітно, але постійно переривається, щоб процесор обробив і інше завдання. При цьому швидкість падає, відгук теж. Перехід на два процесори вирішує проблему: система здатна виконувати дві програми одночасно, не в режимі імітації багатозадачності, а фізично.

З програмою чітко асоціюється потік коду. Традиційно він один у кожній програмі. Тому хай в системі буде хоч двадцять процесорів, потік все одно зможе використовувати тільки один з них. При такому розкладі приросту швидкості не отримати. Інша справа, якщо програма розбиває себе на декілька потоків. У такому разі кожен потік оброблятиме окремий ЦП.

Виникає резонне питання: які програми сьогодні підтримують багатопоточність? Їх немало, кількість тільки росте: Adobe Photoshop CS 2, ABBYY FineReader 9.0, 3D Studio Max 8, кодер DIVX, кодер Windows Media Encoder 9 і тощо. У іграх теж є приклади: «Периметр», Peter Jackson's King Kong [7].

NX/XD-BIT. Набори інструкцій

Випускаючи нові процесори (рис. 2.6), виробники зазвичай прагнуть ввести якомога більше нових функцій. Одні в міру корисні, інші, як повелося, в міру непотрібні...

Почнемо з NX/XD-bit (AMD/Intel). У пам'яті є ділянки з кодом і даними. Деякі шкідливі програми використовували «дірки» в системі, створюючи переповнювання буфера. Зрозуміти ідею просто: чаша розрахована на літр рідини, а вливають туди два літри. Ясна річ, що половина води вийде за вінця, але вся, так або інакше, пройде через чашу. Також і у процесора – після переповнювання буфера процесор покірно обробить все. Апаратна підтримка NX/XD-bit прикриває цей пролом. Але якщо ваш антивірус справляється з роботою, то від цієї функції – ані гаряче, ані холодно.

Далі по списку 64-бітові обчислення. Ви можете поставити Windows XP Professional х64 Edition, але знайти спеціальне ПЗ і потрібні версії драйверів буде складно. Навіть якщо все пройде вдало, особливого зростання продуктивності чекати не доводиться. Єдиний плюс такого переходу – підтримка більшого об'єму оперативної пам'яті. Тут ви не обмежені 2 гігабайтами.

Нарешті, набори інструкцій. Вони покликані збільшити швидкість обчислень, але за умови їх підтримки з боку ПЗ. Ще давно Intel розробила ММХ, далі були SSE, SSE2 і SSE3. AMD адаптувала ММХ, але потім вирішила піти своїм шляхом, запропонувавши 3DNow!

Шлях виявився не дуже вдалим, так що сьогодні майже всі їх процесори підтримують SSE/SSE2 і навіть SSE3. Користь від інструкцій є, але вони не визначають продуктивність ЦП в цілому [7].

 

 

 

Рисунок 2.6 – Зовнішній вигляд процесора

 

Вибір процесора

По-перше, ми не рекомендуємо вам брати зовсім вже дешеві моделі. Процесори серії Celeron і Sempron націлені на офісні ПК. Вони урізані по частоті шини, по функціях, об'єму кеш-пам'яті – все це сильно б'є по продуктивності, особливо в іграх і «важких» програмах.

А зараз – сакраментальне питання. AMD або Intel? Питання тут не в якості – обидві компанії випускають цілком якісну продукцію. А ось продуктивність... Доводиться визнати, що Intel поступово здає позиції, і лідерство Athlon 64 на даний момент не викликає сумнівів. Особливо – в ігровому плані. До того ж процесори Athlon споживають менше енергії, а технологія Cool'n'Quiet дозволяє ефективніше її економити. Складніший вибір – узяти два ядра або одне? Перші дорожче, але, з іншого боку, зараз вже повним ходом з'являються ігри і програми, оптимізовані під багатоядерні процесори.

Спочатку розглянемо одноядерні лінійки. AMD випускає Athlon 64 для Socket 939 і Socket 754. Другий варіант ми не рекомендуємо: заощадивши копійки, ви отримаєте модель з одноканальним контролером пам'яті і меншою продуктивністю.

Розглянемо процесори Intel. Ця компанія у свою чергу пропонує дві лінійки Pentium 4 - 5хх і 6хх. Основна відмінність між ними – розмір кеша (1 Мбайт проти 2 Мбайт). У плані продуктивності «шоста» серія помітно краще, причому різниці цін між ними практично немає. Отже, якщо ви віддаєте перевагу процесорам Intel, оптимальним вибором стане Pentium 4 630. Старша версія з індексом 670 обійдеться набагато дорожче, а зайві 800 МГц нікого не рятують.

Ситуація з двоядерними моделями не менш цікава. Якщо AMD пропонує досить дорогі, зате продуктивні Athlon 64 Х2, то Intel узяла на озброєння іншу стратегію, випустивши лінійку простеньких двоядерних процесорів Pentium D серій 8хх і 9хх. Остання краще, оскільки у неї вдалося понизити споживання енергії, а різниці в цінах при однаковій частоті немає.

Особливо дорогі процесори – Athlon 64 FX і Pentium Extreme Edition. Їх суть не в тому, щоб бути процесорами, а в тому, щоб коштувати по тисячі доларів. На практиці вони не особливо потужніші за старші версії Athlon 64/64 Х2 і Pentium 4/D. Переплата йде за «ексклюзивність» і трохи більшу частоту [7].

 


Флеш-пам’ять

 

Технологія флеш-пам’яті з'явилася близько 20-ти років тому. Наприкінці 80-х років минулого сторіччя флеш-пам’ять почали використовувати як альтернативу UV-EPROM. З цього часу інтерес до флеш-пам’яті з кожним роком неухильно зростає. Увага, яка приділяється флеш-пам'яті, цілком зрозуміла – адже це сегмент напівпровідникового ринку, який найбільш швидко зростає. Щорічно ринок флеш-пам’яті зростає більш ніж на 15 %, що перевищує сумарне зростання всієї решти напівпровідникової індустрії.

Сьогодні флеш-пам’ять можна знайти в самих різних цифрових пристроях. Її використовують як носій мікропрограм для мікроконтролерів HDD і CD-ROM, для зберігання BIOS в ПК. Флеш-пам’ять використовують в принтерах, КПК, відеоплатах, роутерах, брандмауерах, стільникових телефонах, електронних годинниках, записниках, телевізорах, кондиціонерах, мікрохвильових печах і пральних машинах... список можна продовжувати нескінченно. А останніми роками флеш стає основним типом змінної пам'яті, використовуваної в цифрових мультимедійних пристроях, таких як mp3-плеєри і ігрові приставки. А все це стало можливим завдяки створенню компактних і потужних процесорів. Проте при покупці якого-небудь пристрою, що поміщається в кишені, не варто орієнтуватися лише на процесорну потужність, оскільки в списку пріоритетів вона стоїть далеко не на першому місці.

Почалося це в 1997 році, коли флеш-карти вперше стали використовувати в цифрових фотокамерах.

При виборі портативних пристроїв найважливішим є час автономної роботи при розумних масі і розмірах елемента живлення. Багато залежить від пам'яті, яка визначає об'єм збереженого матеріалу, і тривалість роботи без заряджання акумуляторів. Можливість зберігання інформації в кишенькових пристроях обмежується скромними енергоресурсами. Пам'ять, звичайно використовувана в ОЗП комп'ютерів, вимагає постійної подачі напруги. Дискові накопичувачі можуть зберігати інформацію і без безперервної подачі електрики, зате при записі і зчитуванні даних витрачають її за трьох. Гарним рішенням проблеми виявилася флеш-пам’ять, що не розряджається довільно. Носії на її основі називаються твердотільними, оскільки не мають рухомих частин. На жаль, флеш-пам’ять – коштовне задоволення: середня вартість її мегабайта складає 2 долари, що у вісім разів вище, ніж у SDRAM, не кажучи вже про жорсткі диски. А ось відсутність рухомих частин підвищує надійність флеш-пам’яті: стандартні робочі перевантаження дорівнюють 15 g, а короткочасні можуть досягати 2000 g, тобто теоретично карта повинна чудово працювати при максимально можливих космічних перевантаженнях, і витримати падіння з триметрової висоти. Причому в таких умовах гарантується функціонування карти до 100 років.

Багато виробників обчислювальної техніки бачать пам'ять майбутнього виключно твердотільною. Внаслідок цього відбувається практично одночасна поява на ринку комплектуючих декількох стандартів флеш-пам’яті.

 

Що таке flash-пам'ять?

Флеш-пам’ять – особливий вид енергонезалежної перезаписуваної напівпровідникової пам'яті.

Енергонезалежна – що не вимагає додаткової енергії для зберігання даних (енергія потрібна тільки для запису).

Перезаписувана – що допускає зміну (перезапис) даних, що зберігаються в ній.

Напівпровідникова (твердотільна) – що не містить механічно рухомих частин (як звичайні жорсткі диски або CD), побудована на основі інтегральних мікросхем (IC—Chip).

На відміну від багатьох інших типів напівпровідникової пам'яті, елемент флеш-пам’яті не містить конденсаторів – типовий елемент флеш-пам’яті складається всього лише з одного транзистора особливої архітектури. Елемент флеш-пам’яті чудово масштабується, що досягається не тільки завдяки успіхам в мініатюризації розмірів транзисторів, але і завдяки конструктивним знахідкам, що дозволяють в одному елементі флеш-пам’яті зберігати декілька біт інформації. Флеш-пам’ять історично походить від ROM (Read Only Memory) пам'яті, і функціонує подібно до RAM (Random Access Memory). Дані флеш зберігає в елементах пам'яті, схожих на елементи в DRAM. На відміну від DRAM, при відключенні живлення дані з флеш-пам’яті не зникають. Заміни пам'яті SRAM і DRAM флеш-пам'яттю не відбувається через дві особливості флеш-пам’яті: флеш працює досить повільно і має обмеження за кількістю циклів перезапису (від 10.000 до 1.000.000 для різних типів). Інформація, записана на флеш-пам’ять, може зберігатися дуже тривалий час (від 20 до 100 років), і здатна витримувати значні механічні навантаження (які у 5-10 разів перевищують гранично допустимі для звичайних жорстких дисків). Основна перевага флеш-пам’яті над жорсткими дисками і носіями CD-ROM полягає в тому, що флеш-пам’ять споживає значно (приблизно у 10-20 і більше разів) менше енергії під час роботи. У пристроях CD-ROM, жорстких дисках, касетах і інших механічних носіях інформації, велика частина енергії йде на приведення в рух механіки цих пристроїв. Крім того, флеш-пам’ять є більш компактною за більшість інших механічних носіїв. Флеш-пам’ять історично з’явилася від напівпровідникового ROM, проте ROM-пам'яттю не є, а всього лише має схожу на ROM організацію. Безліч джерел (як вітчизняних, так і зарубіжних) часто помилково відносять флеш-пам’ять до ROM. Флеш ніяк не може бути ROM хоч би тому, що ROM (Read Only Memory) переводиться як "пам'ять тільки для читання". Ні про яку можливість перезапису в ROM мови бути не може! Невелика, з початку, неточність не звертала на себе уваги, проте з розвитком технологій, коли флеш-пам’ять стала витримувати до 1 мільйона циклів перезапису, і стала використовуватися як накопичувач загального призначення, цей недолік в класифікації почав впадати в очі. Серед напівпровідникової пам'яті тільки два типи відносяться до "чистого" ROM – це Mask-ROM і PROM. На відміну від них, EPROM, EEPROM і Flash відносяться до класу енергонезалежної перезаписуваної пам'яті (англійський еквівалент – nonvolatile read-write memory, або NVRWM).

 

ROM

ROM (Read Only Memory) – пам'ять тільки для читання. Український еквівалент – ПЗП (Постійно Запам'ятовуючий Пристрій). Якщо бути зовсім точним, даний вид пам'яті називається Mask-ROM (Масочні ПЗП). Пам'ять побудована у вигляді масиву елементів (матриці), що адресуються, кожен елемент якого може кодувати одиницю інформації. Дані на ROM записувалися під час виробництва шляхом нанесення за маскою (звідси і назва) алюмінієвих з’єднувальних доріжок літографічним способом. Наявність або відсутність у відповідному місці такої доріжки кодувала "0" або "1". Mask-ROM відрізняється складністю модифікації вмісту (тільки шляхом виготовлення нових мікросхем), а також тривалістю виробничого циклу (4-8 тижнів). А також у зв'язку з тим, що сучасне програмне забезпечення часто має багато недоробок і часто вимагає оновлення, даний тип пам'яті не набув широкого поширення.

Переваги:

- Низька вартість готової запрограмованої мікросхеми (при великих об'ємах виробництва).

- Висока швидкість доступу до елемента пам'яті.

- Висока надійність готової мікросхеми і стійкість до електромагнітних полів.

Недоліки:

- Неможливість записувати і модифікувати дані після виготовлення.

- Складний виробничий цикл.

PROM – Programmable ROM, або одноразово Програмовані ПЗП. Як елементи пам'яті в даному типі пам'яті використовувалися плавкі перемички. На відміну від Mask-ROM, в PROM з'явилася можливість кодувати ("перепалювати") елементи за наявності спеціального пристрою для запису (програматора). Програмування елемента в PROM здійснюється руйнуванням ("пропаленням") плавкої перемички шляхом подачі струму високої напруги.

Можливість самостійного запису інформації в них зробило їх придатними для штучного і дрібносерійного виробництва. PROM практично повністю вийшов з використання наприкінці 80-х років (рис. 2.7).

 

 

 

Рисунок 2.7 – Programmable ROM

 

Переваги:

- Висока надійність готової мікросхеми і стійкість до електромагнітних полів.

- Можливість програмувати готову мікросхему, що зручно для штучного і дрібносерійного виробництва.

- Висока швидкість доступу до елемента пам'яті.

Недоліки:

- Неможливість перезапису.

- Великий відсоток браку.

- Необхідність спеціального тривалого термічного тренування, без якого надійність зберігання даних була б невисокою.

 

NVRWM: EPROM

Різні джерела по-різному розшифровують абревіатуру EPROM – як Erasable Programmable ROM або як Electrically Programmable ROM (програмовані ПЗП, що можна стирати, або електрично програмовані ПЗП). Перед записом EPROM необхідно провести стирання (відповідно з'явилася можливість перезаписувати вміст пам'яті). Стирання елементів EPROM виконується відразу для всієї мікросхеми за допомогою опромінювання чіпа ультрафіолетовими або рентгенівськими променями протягом декількох хвилин. Мікросхеми, стирання яких проводиться шляхом засвічування ультрафіолетом, були розроблені Intel в 1971 році, і носять назву UV-EPROM (приставка UV (Ultraviolet) – ультрафіолет). Вони містять віконця з кварцового скла, які після закінчення процесу стирання заклеюють.

Переваги:

- Можливість перезаписувати вміст мікросхеми.

Недоліки:

- Невелика кількість циклів перезапису.

- Неможливість модифікації частини даних, що зберігаються.

- Висока вірогідність "не дотерти" (що зрештою приведе до збоїв) або перетримати мікросхему під УФ-світлом (т.з. overerase – ефект надмірного видалення, "перепалювання"), що може зменшити термін служби мікросхеми і навіть привести до її повної непридатності.

EEPROM (EEPROM або Electronically EPROM) – ППЗУ, які можна електрично витирати, були розроблені в 1979 році в тому ж Intel. У 1983 році вийшов перший 16Кбітний зразок, виготовлений на основі FLOTOX-транзисторів (Floating Gate Tunnel-OXide – "плаваючий" затвор з тунелюванням в оксиді).

Головною відмінною особливістю EEPROM та Flash від раніше розглянутих нами типів енергонезалежної пам'яті є можливість перепрограмування при підключенні до стандартної системної шини мікропроцесорного пристрою. У EEPROM з'явилася можливість проводити стирання окремого елемента за допомогою електричного струму. Для EEPROM стирання кожного елемента виконується автоматично при записі до нього нової інформації, тобто можна змінити дані в будь-якому елементі, не зачіпаючи інші. Процедура стирання звичайно є істотно довшою процедурою, ніж запис.

Переваги EEPROM в порівнянні з EPROM:

- Збільшений ресурс роботи.

- Простіше у використанні.

Недолік:

- Висока вартість Flash (повна історична назва Flash Erase EEPROM).

Винахід флеш-пам’яті часто несправедливо приписують Intel, називаючи при цьому 1988 рік. Насправді пам'ять вперше була розроблена компанією Toshiba в 1984 році, і вже наступного року було почате виробництво 256Кбіт мікросхем flash-пам'яті в промислових масштабах. У 1988 році Intel розробила власний варіант флеш-пам’яті.

У флеш-пам’яті використовується дещо відмінний від EEPROM тип елемента-транзистора. Технологічно флеш-пам’ять схожа як з EPROM так і з EEPROM. Основна відмінність флеш-пам’яті від EEPROM полягає в тому, що стирання вмісту елементів виконується або для всієї мікросхеми, або для певного блоку (кластера, кадру або сторінки). Звичайний розмір такого блоку складає 256 або 512 байт, проте в деяких видах флеш-пам’яті об'єм блоку може досягати 256КБ. Слід відмітити, що існують мікросхеми, що дозволяють працювати з блоками різних розмірів (для оптимізації швидкодії). Стирати можна як блок, так і вміст всієї мікросхеми відразу. Таким чином для того, щоб змінити один байт, спочатку в буфер зчитується увесь блок, де знаходиться байт, який підлягає зміні, стирається вміст блоку, змінюється значення байта в буфері, після чого проводиться запис зміненого в буфері блоку. Така схема істотно знижує швидкість запису невеликих об'ємів даних в довільні ділянки пам'яті, проте значно збільшує швидкодію при послідовному записі даних великими порціями.

Переваги флеш-пам’яті в порівнянні з EEPROM:

- Вища швидкість запису при послідовному доступі за рахунок того, що стирання інформації у флеш проводиться блоками.

- Собівартість виробництва флеш-пам’яті нижче за рахунок простішої організації.

Недолік: Повільний запис в довільні ділянки пам'яті.

Організація flash-пам'яті

Елементи флеш-пам’яті бувають як на одному, так і на двох транзисторах.

У найпростішому випадку кожен елемент зберігає один біт інформації і складається з одного польового транзистора із спеціальною електрично- ізольованою ділянкою ("плаваючим" затвором – floating gate), здатною зберігати заряд багато років (рис. 2.8). Наявність або відсутність заряду кодує один біт інформації.

При запису заряд поміщається на плаваючий затвор одним з двох способів (залежить від типу елемента): методом інжекції "гарячих" електронів або методом тунелювання електронів. Стирання вмісту елемента (зняття заряду з "плаваючого" затвора) проводиться методом тунелювання.

Як правило, наявність заряду на транзисторі ідентифікується як логічний "0", а його відсутність – як логічна "1". Сучасна флеш-пам’ять звичайно виготовляється за 0,13- і 0,18-мікронним техпроцесом.

 

 

 

Рисунок 2.8 – Схема флеш-елемента

 


Дата добавления: 2019-07-15; просмотров: 189; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!