Какая структура мозга должна быть мишенью для этих наркотических веществ?

Раздел III . Нервная и гормональная регуляция функций

Занятие № 10. Функции спинного мозга, ствола головного мозга и мозжечка

II . Ответы на вопросы для собеседования:

1. Морфофункциональная организация спинного мозга.

Спинной мозг — наиболее древнее образование центральной нервной системы;

Характерной чертой организации спинного мозга является пери­одичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Спинной мозг человека имеет 31—33 сегмента: 8 шейных (СI— CVIII), 12 грудных (ТI—TXII), 5 поясничных (LI—LV), S крестцовых (SI—SV), 1—3 копчиковых (CoI—СоIII). Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональ­ным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних ко­решков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге перекрытия каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Спинной мозг человека имеет два утолщения: шейное и пояс­ничное — в них содержится большее число нейронов, чем в ос­тальных его участках.

2. Нейронная организация сегментов спинного мозга.

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество рас­пределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% — мотонейроны, а 97% — вставочные. Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых — пара­симпатического отдела автономной (вегетативной) нервной систе­мы.

Афферентные входы в спинной мозг организованы аксо­нами спинальных ганглиев, лежащих вне спинного мозга, и аксонами экстра- и интрамуральных ганглиев симпатического и парасимпа­тического отделов автономной нервной системы.

Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чув­ствительности. Проприоцептивные волокна по толщине и скорости проведения возбуждения делятся на 3 группы. Волокна каждой группы имеют свои пороги возникновения возбуждения.

Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления — и представляет собой кожную рецептирующую сис­тему.

Третья группа афферентных входов спинного мозга представлена рецептирующими входами от висцеральных органов; это висцеро-рецептивная система.

Интернейроны. Эти промежуточные нейроны, генерирующие им­пульсы с частотй до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функ­цией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Воз­буждение интернейронов, связанных с моторными клетками, ока­зывает тормозящее влияние на мышцы-антагонисты.

Нейроны симпатического отдела автономной системы. Распо­ложены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3—5 в секунду).

3. Функции задних и передних корешков сегментов спинного мозга. Закон Белла-Мажанди.

В передних рогах находятся нейроны, дающие свои ак­соны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру. Поражение переднего рога и переднего корешка спинного моз­га приводит к параличу мышц, которые теряют тонус, атрофи­руются, при этом исчезают рефлексы, связанные с пораженным сегментом.

Задние рога выполняют главным образом сенсорные фун­кции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

Нейроны парасимпатического отдела автономной системы локализуются в сакральном отделе спинного мозга и являются фоновоактивными. В случаях раздражения и поражения задних корешков спинного мозга наблюдаются «стреляющие», опоясывающие боли на уровне метамера пораженного сегмента, снижение чувствительности всех видов, утрата или снижение рефлексов, вызываемых с метамера тела, который передает информацию в пораженный корешок. В случаях изолированного поражения заднего рога утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняется, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной — прямо в задний столб и по проводящим путям поднимаются вверх.

Вследствие того, что аксоны вторых нейронов болевой и темпе­ратурной чувствительности идут на противоположную сторону через переднюю серую спайку спинного мозга, при повреждении этой спайки на теле симметрично утрачивается болевая и температурная чувствительность.

В опытах с перерезкой и раздражением корешков спинного мозга показано, что задние корешки являются афферентными, чувстви­тельными, центростремительными, а передние — эфферентными, двигательными, центробежными (закон Белла—Мажанди).

4. Альфа- и гамма-мотонейроны спинного мозга, их функции.

Аксон мотонейрона своими терминалами иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон (т. е. чем меньше количественно мотонейронная единица), тем более дифференцированные, точные движения выполняет мышца.

Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздра­жения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение мышцы.

Мотонейроны спинного мозга функционально делят на α- и γ-нейроны. α-Мотонейроны образуют прямые связи с чувствительными пу­тями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20 000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10—20 в секунду), γ-Мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежу­точные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в се­кунду).

5. Нейроны боковых рогов сегментов спинного мозга, их функции.

В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1—2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга — эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.

Средняя часть серого вещества спинного мозга содержит пре­имущественно короткоаксонные веретенообразные клетки (проме­жуточные нейроны), выполняющие связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.

В случае поражения боковых рогов спинного мозга исчезают кожные сосудистые рефлексы, нарушается потоотделение, наблю­даются трофические изменения кожи, ногтей. При одностороннем поражении парасимпатического отдела автономной нервной системы на уровне крестцовых отделов спинного мозга нарушений дефекации и мочеиспускания не наблюдается, так как корковая иннервация этих центров является двусторонней.

6. Восходящие проводящие пути спинного мозга, их функции.

Пучки Голля и Бурдаха проводят нервные импульсы от проприорецепторов мышц и сухожилий к соответствующим ядрам продолговатого мозга, а затем таламусу и соматосенсорным зонам коры. Благодаря этим путям производится оценка и коррекция позы туловища. 

Пучки Говерса и Флексига передают возбуждение от проприорецепторов, механорецепторов кожи к мозжечку. За счет этого обеспечивается восприятие и бессознательная координация позы. 

Спиноталамические тракты проводят сигналы от болевых, температурных, тактильных рецепторов кожи к таламусу, а затем в соматосенсорные зоны коры. Они обеспечивают восприятие соответствующих сигналов и формирование соответствующей чувствительности.

7. Нисходящие проводящие пути спинного мозга, их функции.

Кортикоспинальные (пирамидные) пути идут от пирамидных и экстрапирамидных нейронов коры к альфамотонейронам двигательных центров спинного мозга, осуществляют координацию произвольных движений.

Руброспинальный путь (Монаков) проводит сигналы от красного ядра среднего мозга к мотонейронам мышцсгибателей, регулирует тонус соответствующих мышц при изменениях положения тела.

Вестибулоспинальный путь передает сигналы от вестибулярных ядер продолговатого мозга (в первую очередь, от ядра Дейтерса) к мотонейронам мышц-разгибателей; участвует в поддержании позы и равновесия тела.

8. Классификация спинномозговых рефлексов, их характеристика.

1) Соматосенсорные: рефлексы с рецепторов кожи носят характер, зависящий от силы раздражения, вида раздражаемого рецептора, но чаще всего конечная реакция выглядит в виде усиления сокращения мышц-сгибателей.

2) Соматовисцеральные: имеют свои пути; они начинаются от различных рецепторов, входят в спинной мозг через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не непосредственно к органам, а к ганглию симпатического или парасимпатического отдела автономной нервной системы; автономные (вегетативные) рефлексы обеспечивают реакцию внутренних органов, сосудистой системы на раздражение висцеральных, мышечных, кожных рецепторов; эти рефлексы отличаются большим латентным периодом (ЛП) двумя фазами реакции: первая — ранняя — возникает с ЛП 7—9 мс и реализуется ограниченным числом сегментов, вторая — поздняя — возникает с большим ЛП — до 21 мс и вовлекает в реакцию практически все сегменты спинного мозга; поздний компонент вегетативного рефлекса обусловлен вовлечением в него вегетативных центров головного мозга; сложной формой рефлекторной деятельности спинного мозга является рефлекс, реализующий произвольное движение; в основе реализации произвольного движения лежит γ-афферентная рефлекторная система. В нее входят пирамидная кора, экстрапирамидная система, α- и γ-мотонейроны спинного мозга, экстра- и интрафузальные волокна мышечного веретена.

3) Висцеросоматические: рефлексы возникают при стимуляции афферентных нервов внутренних органов и характеризуются появлением двигательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины.

4) Миотатические рефлексы: рефлексы на растяжение мышцы; быстрое растяжение мышцы, всего на несколько миллиметров механическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции; например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени; дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра —> спинальный ганглий — > задние корешки —> задние рога III поясничного сегмента —> мотонейроны передних рогов того же сегмента —> экстрафузальные волокна четырехглавой мышцы бедра; реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц-разгибателей не расслаблялись мышцы- сгибатели; рефлекс на растяжение свойствен всем мышцам, но у мышц- разгибателей, они хорошо выражены и легко вызываются.

9. Функции продолговатого мозга, их характеристика.

Сенсорные функции (регулирует ряд сенсорных функций):

- рецепцию кожной чувствительности лица — в сенсорном ядре тройничного нерва;

- первичный анализ рецепции вкуса — в ядре языкоглоточного нерва; рецепцию слуховых раздражений — в ядре улиткового нерва;

- рецепцию вестибулярных раздражений — в верхнем вестибулярном ядре.

- в задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра).

На уровне продолготоватого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.

Проводниковые функции (через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга):

- спинно-таламический;

- кортикоспинальный;

- руброспинальный.

В нем берут начало тракты:

- вестибулоспинальный;

- оливоспинальный;

- ретикулоспинальный тракты;

Они обеспечивают тонус и координацию мышечных реакций.

В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути.

Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

Рефлекторные функции (отвечает за защитные рефлексы): рвоты, чихания, слезоотделения, смыкания век, а также рефлексы пищевого поведения (сосания, жевания, глотания);

Соматические рефлексы: рефлексы поддержания позы тела за счет статических рефлексов, регулирующих тонус мышц, удерживающих положение тела в пространстве, а также статокинетических, обеспечивающих перераспределение тонуса мышц туловища для организации позы в момент прямолинейного и вращательного движения.

10. Нервные центры продолговатого мозга.

I. Жизненно – важные:

- Дыхательный

- Сердечно-сосудистый

II. Защитные:

- Слезоотделения

- Кашля

- Чихания

- Мигания

- Рвоты

III. Пищеварительная:

- Слюноотделения

- Сосания

- Жевания

- Глотания

IV. Постуральные (поддержание позы):

- Статические

- Статокинетические

11. Роль продолговатого мозга в рефлексах регуляции позы.

Соматическими являются статические рефлексы продолговатого мозга, относящиеся к познотоническим или рефлексам позы. Эти рефлексы осуществляются ядром Дейтерса из группы вестибулярных ядер.От него к мотонейронам разгибателей спинного мозга идут нисходящие вестибулоспинальные тракты. Рефлексы возникают тогда, когда возбуждаются вестибулярные рецепторы или проприорецепторы мышц шеи. Коррекция положения тела происходит за счет изменения тонуса мышц. Например, при запрокидывании головы животного назад повышается тонус разгибателей передних конечностей и снижается тонус разгибателей задних. При наклоне головы вперед возникает обратная реакция.Приповороте головы в сторону, повышается тонус разгибателей конечности на этой стороне и сгибателей противоположной конечности

12. Функции варолиевого моста, их характеристика.

Мост — расположен выше продолговатого мозга и выполняет следующие функции: - двигательные; - сенсорные; - интегративные; - проводниквые.

Проводниковая функция варолиевого моста: через мост проходят все восходящие и нисходящие пути, связывающие мост с мозжечком и спинным мозгом, корой больших полушарий и другими структурами ЦНС.

Роль варолиевого моста в регуляции вентиляции легких: в мосте расположен пневмотаксический центр. Он запускает центр выдоха продолговатого мозга, а также группа нейронов, активирующих центр вдоха.

Постуральная функция моста: активное поддержание позы в пространстве за счет мышечной рецепции.

Роль моста в задержании дыхания: в мосте располагается апнестический центр.

13. Нервные центры и ядра варолиевого моста, их функции.

1) Ядра VIII пары черепно-мозговых нервов, вестибулярное ядро — отвечает за первичный анализ вестибулярных раздражителей.

2) VII пара — лицевой нерв. иннервирует мимические мышцы лица, подъязычную и подчелюстную слюнные железы, передает информацию от вкусовых рецепторов передней части языка.

3) V пара — тройничный нерв. Двигательное ядро иннервирует жевательные мышцы, мышцы небной занавески и мышцы, напрягающие барабанную перепонку. Чувствительное ядро получает афферентные аксоны от рецепторов кожи лица, слизистой оболочки носа, зубов, надкостницы костей черепа, конъюктивы глазного яблока.

Ретикулярная формация моста является продолжением ретикулярной формации продолговатого мозга. Она влияет на кору больших полушарий, активируя ее и вызывая пробуждение. Аксоны ретикулярной формации идут в мозжечок и спинной мозг.

14. Функции среднего мозга, их характеристика.

Рефлекторная функция: статокинетические рефлексы, которые служат для сохранения устойчивого положения тела при движении. К ним относятся:

Нистагм головы и глаз – это их медленное бессознательное движение в сторону противоположную вращению, а затем быстрое возвращение в исходную позицию. Нистагм глаз сохраняется некоторое время и после вращения. 

Лифтная реакция – это уменьшение тонуса разгибателей конечностей в начале быстрого подъема, которое сменяется его повышением. При быстром опускании, тонус разгибателей меняется противоположным образом. 

Рефлекс готовности к прыжку проявляется увеличением тонуса разгибателей передних конечностей при опускании животного вниз головой. В результате они вытягиваются. Статокинетические рефлексы, как и выпрямительные, обусловлены возбуждением рецепторов вестибулярного аппарата.

Ядра III (глазодвигательного) и IV (блокового) пар черепных нервовобеспечивают содружественные движения глаз. Кроме того, первое регулирует ширину зрачка и кривизну хрусталика

Проводниковая функция: реализуется совместно с мозжечком и соотвествующими структурами.

15. Функции ядер нижнего и верхнего двухолмия.

Верхние бугры четверохолмия являются первичными зрительными центрами. К ним подходят пути от нейронов сетчатки глаза. От них сигналы идут к таламусу, а по нисходящему тектоспинальному пути – к мотонейронам спинного мозга. В верхнем двухолмии происходит первичный анализ зрительной информации. Например, определение положения источника света, направление его движения. В них также формируются зрительные ориентировочные рефлексы (поворот головы в сторону источника света). 

Нижние бугры четверохолмия являются первичными слуховыми центрами. К ним идут сигналы от фонорецепторов уха, а от них – к таламусу. От них к мотонейронам также идут пути в составе тектоспинального тракта. В нижних буграх осуществляется первичный анализ слуховых сигналов, а за счет связей с мотонейронами формируются ориентировочные рефлексына звуковые раздражители.

16. Функции красного ядра среднего мозга.

Расположены в верхней части ножки мозга. К нему идут нервные пути от коры полушарий, подкорковых ядер, мозжечка. От него идет руброспинальный тракт к мотонейронам сгибателей спинного и ретикулярной формации продолговатого мозга. В связи с различным функциональным значением ядра Дейтерса и красного ядра, при перерезке ствола между средним и продолговатым мозгом у животных возникает децеребрационная ригидность (резкое повышение тонуса всех мышц разгибателей): голова животного запрокидывается, спина выгибается, конечности вытягиваются (красное ядро, активируя мотонейроны сгибателей, через вставочные тормозные нейроны тормозит мотонейроны разгибателей, одновременно исключается тормозящее влияние красного ядра на ретикулярную формацию продолговатого мозга, возле ядра Дейтерса, в отсутствии влияния красного ядра преобладает возбуждающее действие ядра Дейтерса на мотонейроны разгибателей).

17. Функции черной субстанции среднего мозга.

Располагается в ножках мозга, участвует в регуляции актов жевания, глотания и их последовательности, а также в координации мелких и точных движений пальцев рук. Нейроны этого ядра синтезируют дофамин, поставляемый к базальным ядрам головного мозга. Он играет важную роль в контроле сложных двигательных актов. Поражение черного вещества приводит к дегенерации дофаминергечиских волокон, проецирующихся в полосатое тело, нарушению тонких движений пальцев рук, развитию мышечной ригидности и тремору (болезнь Паркинсона). Принимает участие в пищевом поведении, регулирует пластический тонус, эмоциональное поведение.

18. Функции ретикулярной формации ствола мозга, их характеристика.

1. Соматодвигательный контроль (активация скелетной мускулатуры), может быть прямым через ретикулоспинальный путь и непрямым через мозжечок, оливы, бугорки четверохолмия, красное ядро, черное вещество, полосатое тело, ядра таламуса и соматомоторные зоны коры. 2. Соматочувствительный контроль, т.е. снижение уровней соматосенсорной информации — «медленная боль», модификация восприятия различных видов сенсорной чувствительности (слуха, зрения, вестибуляции, обоняния).

3. Висцеромоторный контроль состояния сердечно-сосудистой, дыхательной систем, активности гладкой мускулатуры различных внутренних органов.

4. Нейроэндокринная трансдукция через влияние на нейромедиаторы, центры гипоталамуса и далее гипофиз.

5. Биоритмы через связи с гипоталамусом и шишковидной железой.

6. Различные функциональные состояния организма (сон, пробуждение, состояние сознания, поведение) осуществляются посредством многочисленных связей ядер ретикулярной формации со всеми частями ЦНС.

7. Координация работы разных центров ствола мозга, обеспечивающих сложные висцеральные рефлекторные ответы (чихание, кашель, рвота, зевота, жевание, сосание, глотание и др.).

19. Восходящие и нисходящие влияния ретикулярной формации на другие структуры головного и спинного мозга.

При восходящем влияние ретикулярной формации, повышается активность аналитико-синтетической деятельности, увеличивается скорость рефлексов, организм подготавливается к реакции на неожиданную ситуацию. Поэтому ретикулярная формация участвует в организации оборонительного, полового, пищеварительного поведения. С другой стороны, она может избирательно активировать или тормозить определенные системы мозга. В свою очередь кора больших полушарий, через нисходящие пути, может оказывать возбуждающее действие на ретикулярную формацию.

Нисходящие ретикулоспинальные пути идут от ретикулярной формации к нейронам спинного мозга. Поэтому она может оказывать нисходящие возбуждающие и тормозящие влияния на его нейроны. Например, ее гипоталамические и мезэнцефальные отделы повышают активность альфа-мотонейронов спинного мозга. В результате этого растет тонус скелетных мышц, усиливаются двигательные рефлексы. Тормозящее влияние ретикулярной формации на спинальные двигательные центры осуществляется через тормозные нейроны Реншоу. Это приводит к торможению спинальных рефлексов.

20. Морфофункциональная организация таламуса. Классификация ядер таламуса.

Таламус - один из 2-х отделов промежуточного мозга, представляет собой большое парное скопление серого вещества на боковых стенках промежуточного мозга по бокам III желудочка, имеющее яйцевидную форму, причем передний его конец заострен (передний бугорок), а задний расширен (подушка). В нем происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходят сигналы от зрительных, слуховых, вкусовых, кожных, мышечных, висцеральных рецепторов, а также ядер ствола мозга, мозжечка, подкорковых. Сам он содержит около 120 ядер, делящихся на:

- Специфические

- Ассоциативные

- Неспецифические

21. Функции специфических, ассоциативных и неспецифических ядер таламуса.

Специфические ядра: делятся на переключающие (релейные) и ассоциативные: переднее вентральное, меди­альное, вентролатеральиое, постлатеральное, постмедиальное, лате­ральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно.

Переключающие ядра состоят из нейронов, у которых мало дендритов и длинный аксон. С их помощью происходит переключение сигналов, идущих от нижележащих отделов ЦНС, на соответствующие соматосенсорные зоны коры, в которых находится представительство определенных рецепторов. Например, в латеральных коленчатых телах переключаются зрительные сигналы на затылочные доли коры. В переключающих ядрах выделяется наиболее важная информация. При нарушении функции этих ядер выключается восприятие соответствующих сигналов.

Ассоциативные нейроны имеют большее количество отростков и синапсов. Это позволяет им воспринимать различные по характеру сигналы. Они получают эти сигналы от переключающих нейронов и осуществляют их первичный синтез. От них пути идут к ассоциативным зонам коры, в которых происходит высший синтез и формируются сложные ощущения.

Ассоциативные ядра таламуса: представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное — с лобной долей коры, латеральное дорсальное — с теменной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга.

Неспецифические относятся к переднему отделу ретикулярной формации ствола мозга и представлены срединным цент­ром, парацентральным ядром, центральным медиальным и лате­ральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и цен­тральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны нейронов поднимаются к коре и диффузно пронизывают все ее слои. К этим ядрам подходят нервные волокна от нижележащих отделов РФ, гипоталамуса, лимбической системы, базальных ядер. При возбуждении неспецифических ядер в коре мозга развивается периодическая электрическая активность в виде веретен, что свидетельствует о переходе к сонному состоянию. Т.е. они обеспечивают определенный уровень функционального активности коры.

Кроме того, ядра таламуса участвуют в формировании безусловных двигательных рефлексов сосания, жевания, глотания. В таламусе находится подкорковый центр болевой чувствительности, в котором формируется общее ощущение боли, не имеющее определенной локализации и окраски

22. Морфофункциональная организация мозжечка.

Мозжечок состоитиз 2-х полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Эфферентные импульсы от мозжечка идут к красному ядру среднего мозга, ядру Дейтерса продолговатого мозга, к таламусу, а затем к моторным зонам КБП и подкорковым ядрам.

23. Мозжечковый контроль двигательной активности.

Выполняет функцию координации и регуляции произвольных и непроизвольных движений, их коррекции и программирования. Мозжечок принимает участие в двигательной адаптации и двигательном научении, в осуществлении вегетативных функций и некоторых поведенческих актов. Регулирует силу и точность мышечных сокращений и их тонус как в покое, так и при движениях, а также синергию сокращений разных мышц при сложных движениях.

24. Симптомы мозжечковой недостаточности, их характеристика.

В связи с тем, что мозжечок выполняет данные функции, при его удалении у животного развивается комплекс двигательных нарушений, называемый триадой Лючиани. Он включает:

1. атония и дистония – снижение и неправильное распределение тонуса скелетных мышц;

2. астазия – невозможность слитного сокращения мышц, а как следствие, сохранения устойчивого положения тела при стоянии, сидении (покачивание);

3. астения – быстрая утомляемость мышц;

4. атаксия – плохая координация движений при ходьбе. Неустойчивая "пьяная" походка;

5. адиадохокинез – нарушение правильной последовательности быстрых целенаправленных движений.

В клинике умеренные поражения мозжечка проявляются триадой Шарко:

1. нистагм глаз в состоянии покоя;

2. тремор конечностей, возникающийпри их движениях;

3. дизартрия – нарушения речи.

25. Роль мозжечка в регуляции мышечного тонуса.

Участвует в поддержание мышечного тонуса: через красные ядра среднего мозга он активирует тонус мышц-сгибателей, а через вестибулярные ядра продолговатого мозга – тонус мышц-разгибателей. Основную роль в поддержании мышечного тонуса, позы и равновесия тела играет кора червя.

Кора мозжечкаимеет складчатое строение, здесь выделяют доли, каждая из которых, в свою очередь, делится дольки, состоящие из извилин-лепестков. В коре выделяют три слоя: молекулярный (наружный), слой клеток Пуркинье и зернистый (внутренний). Афферентные импульсы от проприорецепторов, кожных рецепторов поступают в кору мозжечка по лазающим и моховидным волокнам. По лазающим волокнам импульсы идут от спинного мозга, через оливы продолговатого мозга к клеткам Пуркинье. Моховидные (мшистые) волокна от ядер моста подходят к гранулярным клеткам зернистого слоя (выход импульсов отсюда зависит от деятельности клеток Гольджи), далее направляются к клеткам Пуркинье и в молекулярный слой, где образуют синаптические контакты с корзинчатыми и звездчатыми клетками, аксоны которых направляются к клеткам Пуркинье. Таким образом, последние являются эфферентным выходом коры мозжечка и оказывают тормозящее влияние на ядра мозжечка, которые регулируют активность двигательных центров спинного, продолговатого, среднего и промежуточного мозга.

От подкорковых ядер мозжечка (зубчатого, пробковидного, шаровидного и ядра шатра) импульсы направляются к мотонейронам спинного мозга через ядро Дейтерса продолговатого мозга и ретикулярную формацию. На уровне коры мозжечкаосуществляется программирование движений, их согласование. Роль мозжечка в регуляции двигательной активности заключается в правильном перемещении тела в пространстве, в точном выполнении движений в соответствии с командами, поступающими из коры больших полушарий.

III Ситуационные задачи:

1. С целью оценки рефлекторной функции нервной системы у людей разного возраста проводили исследование подошвенного рефлекса. При этом штриховое раздражение поверхности стопы у новорожденных сопровождалось тыльным сгибанием стопы, разгибанием пальцев ноги и их веерообразным расхождением, а у юношей и людей зрелого возраста – к подошвенному сгибанию стопы и пальцев.

Есть ли у испытуемых отклонение от нормы? Чем объясняется такое различие в характере подошвенного рефлекса?

В обоих случаях – норма. У детей до 3-4 месяцев жизни такая реакция связана с

Недостаточным развитием головного мозга и системы кортикального пути. Волокна этого пути проводят тормозные импульсы, которые препятствуют возникновению

Онтогенетически более старых сегментарных спинальных рефлексов. При нарушении этого пути поступление импульсов нарушается, что выражается в возникновении рефлекса Бабинского. У здоровых взрослых этот рефлекс отсутствует.

2. Известно, что уровень сознания у человека определяется состоянием нейронов коры полушарий большого мозга. В то же время для наркотизации пациента перед оперативным вмешательством часто используют наркотические вещества, которые не оказывают непосредственного влияния на корковые нейроны.

Какая структура мозга должна быть мишенью для этих наркотических веществ?

Ретикулярная формация, т.к. она чувствительна к наркотическим веществам

3. Пациент жалуется на шаткость походки. При обследовании обнаружены пониженный тонус мышц, асинергия при движениях рук, дрожание кистей, усиливающееся при целенаправленных движениях (интенционный тремор).


Дата добавления: 2019-02-22; просмотров: 1168; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!