Критерии оценки помехоустойчивости информационных систем



ПОМЕХОУСТОЙЧИВОСТЬ ИНФОРМАЦИОННЫХ СИСТЕМ

Общая характеристика помех и искажений в каналах связи

 

В реальном канале сигнал при передаче искажается, и сообщение воспроизводится с некоторой ошибкой. Причиной таких ошибок являются искажения,вносимые самим кана­лом, и помехи,воздействующие на сигнал.

Частотные и временные характеристики канала опреде­ляют так называемые линейные искажения. Кроме того, канал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев. Как линейные, так и нелинейные искажения обусловлены известными характеристиками канала и поэтому, в принципе, могут быть устранены путем надлежащей коррекции.

Следует четко отделять искажения от помех, имеющих случайный характер. Помехи заранее неизвестны и поэтому не могут быть полностью устранены.

Под помехами понимаются любые возмущения в канале передачи информации, вызывающие случайные отклонения принятого сообщения от переданного и затрудняющие его прием.

Откуда же берутся помехи и как они попадают в приемник? Приведем всем известный пример. В комнате прослушивается магнитофонная запись. Но слушатель воспринимает не только записанную музыку (полезное сообщение), но и разговоры сосе­дей, и шум транспорта с улицы, и звуки из соседней комнаты и т. д. Это все помехи. Точно так же и в любом канале электросвя­зи. Современный мир полон не только звуков, но и электромагнитных колебаний естественного и искусственного происхожде­ния. Они везде и всюду. Часть из них, конечно, теми или други­ми путями проникает на вход приемника, хотя мы и пытаемся этому препятствовать.

Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам. Иногда помехи резко отличаются от сигнала, иногда даже трудно определить, где сигнал, а где помеха. Вдруг в телефоне слышно два разговора. Надо время, чтобы различить, где полезный сигнал, а где случайно подклю­чившаяся «помеха». В то же время эта «помеха» – полезный сиг­нал для другого абонента.

Классификацию помех можно провести по следующим приз­накам:

– по происхождению (месту возникновения);

– по физическим свойствам;

– по характеру воздействия на сигнал.

По происхождению в первую очередь надо отметить внутренние помехи, например, внутрен­ние шумы аппаратуры, входящей в канал связи, обусловленные хаотическим движением носителей заряда в усилительных прибо­рах, сопротивлениях и других элементах. Это так называемые тепловые шумы. Квадрат эффективного напряжения теплового шума на сопротивлении R определяется известной формулой Найквиста:

    U2ш = 4×k×T×R×F, (9.1)

                                                                     

где Т – абсолютная температура сопротивления R;

F – полоса частот;

R=1,37*10-23 В×с/град – постоянная Больцмана.

Как следует из (9.1), эти шумы принципиально устранимы только при абсолютном нуле (T = 0 К).

Среди внешних помех, то есть помех от посторонних источников, находящихся вне канала связи, можно назвать:

· атмосферные помехи (грозовые разряды, полярные сияния и др.), обусловленные электрическими процессами в атмосфере;

· индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, медицинские установки, системы зажигания двигателей и др.);

· помехи от посторонних станций и каналов, возникающие от различных нарушений режима их работы и свойств каналов;

· космические помехи, связанные с электромагнитными процес­сами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.

По физическим свойствам различают флуктуационные и со­средоточенные помехи.

Флуктуационными называют помехи, обусловленные флукту­ациями тех или иных физических величин. Название происходит от физического понятия флуктуации (от лат. fluctuation – колеба­ние) – случайные отклонения физических величин от среднего значения.

Для такой помехи ха­рактерно очень малое число выбросов, превышающее средний уровень более чем в 3–4 раза. Но большие (в принципе, беско­нечные) выбросы всегда имеются. Спектр помехи весьма широ­кий. Флуктуационные помехи проникают в систему связи не толь­ко извне, они зарождаются также внутри самой системы в раз­личных ее звеньях.

Причинами внутренних флуктуационных помех являются в ос­новном тепловой шум в проводниках и дробовый эффект в элек­тронных приборах. К внешним флуктуационным помехам приня­то относить помехи космического происхождения, помехи, выз­ванные взаимными влияниями цепей в линиях связи (линейные и нелинейные переходы, попутный поток и некоторые другие). Хо­тя эти помехи по своему происхождению и не являются строго флуктуационными, но они обладают схожими признаками.

Мешающее воздействие флуктуационных помех зависит от ха­рактера передаваемого сообщения. В телефоне при речевом сиг­нале эта помеха прослушивается как звуковой шум, поэтому ча­сто флуктуационную помеху называют флуктуационным шумом. На экране телевизора флуктуационные помехи вызывают размы­тость контуров и понижение контраста изображения, при теле­графной передаче – ошибочное принятие знаков. Характерной особенностью флуктуационных помех является то, что явления, порождающие эти помехи, лежат в физической природе вещей (дискретное строение вещества, дискретная природа электромаг­нитного поля) и принципиально не могут быть устранены.

К сосредоточенным по времени (импульсным) помехам отно­сятся помехи в виде одиночных коротких импульсов различной интенсивности и длительности, следующих один за другим через случайные достаточно большие промежутки времени.

Причина­ми импульсных помех являются: грозовые разряды; радиостан­ции, работающие в импульсном режиме; линии электропередачи и другие энергоустановки; система зажигания и энергообеспече­ния транспорта; перегрузки усилителей; плохие контакты в обо­рудовании и питании; недостатки разработки и изготовления оборудования; эксплуатационные работы (реконструкция, про­филактика, подключение к действующему  каналу  измерительных  приборов, ошибочная  коммутация  и т. п.).

К сосредоточенным по спектру помехам относятся помехи по­сторонних радиостанций, генераторов высокой частоты различно­го назначения (медицинские, промышленные, бытовые и др.), пе­реходные помехи от соседних каналов многоканальных систем. Обычно это гармонические или модулированные колебания с ши­риной спектра меньшей или соизмеримой с шириной спектра по­лезного сигнала. В диапазоне декаметровых волн, например, они являются основными видами помех.

По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи.

Аддитивной является помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействуют на прием­ное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Ме­шающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. Мультипликативные помехи непосредственно связаны с процес­сом прохождения сигнала в среде распространения и поэтому ощущаются только при наличии сигнала в системе связи. Про­стейший пример – телефонная или радиотрансляционная линия с плохими контактами. Другим примером мультипликативной по­мехи являются интерференционные замирания сигнала при при­еме на декаметровых волнах.

В реальных каналах электросвязи обычно имеет место не од­на, а совокупность помех. Но все же основными можно считать флуктуационные помехи, воздействующие на сигнал как адди­тивные.

Под искажениями понимают такие изменения формы сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигна­ла – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные, возника­ющие в линейных цепях; нелинейные, возникающие в нелиней­ных цепях. В общем случае искажения отрицательно сказывают­ся на качестве воспроизведения сообщений и не должны превы­шать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. А дальше измерение фор­мы сигнала можно скомпенсировать корректирующими цепями или просто учесть при дальнейшей обработке в приемнике. Это уже дело техники. Другое дело помехи – они заранее неизвестны и поэтому не могут быть устранены полностью.

Борьба с помехами – основная задача теории и техники свя­зи. Любые теоретические и технические решения о выполнении кодера и декодера, передатчика и приемника системы связи дол­жны приниматься с учетом того, что в линии связи имеются по­мехи.

При всем многообразии методов борьбы с помехами их мож­но свести к трем направлениям:

1. Подавление помех в месте их возникновения. Это достаточ­но эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источник помех, на которые воздействовать нельзя (грозовые разряды, шумы Солн­ца и др.).

2. Уменьшение помех на путях их проникновения в приемник. Следует отметить, что помехи обычно воздействуют на сигнал в среде распространения. Поэтому как проводные, так и радиоли­нии строятся так, чтобы обеспечить заданный уровень помех.

3. Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Это возможно за счет применения специальных методов преобразования сигнала на передающей стороне и анализа принимаемого сигнала. Для цифровых систем передачи основным способом ослабления воздействия помех является помехоустойчивое кодирование.

 

Критерии оценки помехоустойчивости информационных систем

Под помехоустойчивостью понимают способность информационной системы противостоять вредному действию помех. В результате действия помех принятое сообщение будет в какой-то мере отличаться от переданного. Поэтому помехоустойчивость можно характеризовать как степень соответствия принятого сообщения переданному при заданной помехе. При сравнении нескольких систем та из них будет более помехоустойчивой, которая при одинаковой помехе обеспечит меньшее различие между принятым и переданным сообщениями.

Имеется несколько способов введения количественных характеристик помехоустойчивости. Рассмотрим сначала способы описания помехоустойчивости дискретных систем. Эти системы характерны тем, что все возможные сигналы конечной длительности образуют дискретное конечное множество; пусть общее число возможных сигналов равно N . Действие шумов сводится к тому, что некоторые символы в сигнале подменяются другими, в результате чего вместо переданного (например, i -го) сигнала принимается другой (например, k -й) сигнал. Помехоустойчивость системы связи наиболее полно может быть охарактеризована набором вероятностей {Pik} того, что при передаче i -го сигнала будет принят k -й (i , k = 1,2,...,N); и если мы хотим задать требования к помехоустойчивости системы с учетом ценности каждого из сообщений в отдельности, то задание всей матрицы {Pik} необходимо.

Однако сравнение систем по их матрицам {Pik} (которые можно назвать «стохастическими матрицами трансформации сообщений» связано с рядом затруднений, а часто и не необходимо: достаточно ввести более простые характеристики помехоустойчивости. К таким простым параметрам относится, например, средняя вероятность ошибочного приема, Рош.ср.:

                                                                (9.2)

где pi – вероятность передачи i - го сигнала.

Другим собирательным параметром, характеризующим помехоустойчивость системы, может служить остаточная средняя неопределенность относительно переданного сообщения, т.е. энтропия

Н0 = -(1 – Рош.ср.) log (1 – Pош.ср.) – Рош.ср. log Рош.ср.                  (9.3)

Для непрерывных систем связи описание помехоустойчивости требует специфического подхода, так как множество возможных сигналов даже конечной длительности несчетно. Действие шумов в линии связи сводится к тому, что вместо отправленного сигнала x ( t ) на выходе премника наблюдается другая функция времени, y ( t ). Чем ближе y ( t ) к x ( t ) при заданном шуме, тем более устойчива система по отношению к данной помехе. Для количественного описания помехоустойчивости необходимо ввести меру различия двух функций  x ( t ) и y ( t ). Чаще всего в качестве такой меры принимается средний квадрат разности сравниваемых функций:

                                      (9.4)

«Расстояние» между функциями x ( t ) и y ( t ) может быть также определено с помощью так называемой абсолютной ошибки

                                           (9.5)

Другим способом является «частотно-взвешенный эффективный критерий» [4]. Идея этого критерия состоит в том, чтобы придавать различным частотным компонентам разности х и у разные веса. Это эквивалентно пропусканию разности x ( t ) – y ( t ) через фильтр с определенной переходной функцией h ( t ); выходной сигнал такого фильтра выразится как

                                                      (9.6)

«Расстояние» между функциями x ( t ) и y ( t ) определится как средняя мощность сигнала на выходе рассматриваемого гипотетического фильтра:

                                                                 (9.7)

Введенные выше меры различия отправляемого и принимаемого сигналов могут служить основой для характеристики помехоустойчивости систем. Например, система может считаться достаточно помехоустойчивой, если «расстояние» между отправленным сигналом и сигналом на выходе системы не превышает заданной величины.

В качестве меры помехоустойчивости могут быть приняты и другие числовые характеристики, например, логарифм обратной величины среднеквадратичной ошибки в непрерывном случае, минус логарифм вероятности ошибки в дискретном случае, различным способом введенные понятия эквивалентного отношения сигнала к шуму и пр.

 


Дата добавления: 2019-02-26; просмотров: 2098; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!