Шестое и последующие поколения ЭВМ



Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Заключение

Все этапы развития ЭВМ принято условно делить на поколения.

Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент.

Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.

Вопрос 12.

Кодирование звуковой информации кратко Звук – волна, распространяющая в какой либо среде (воздухе) и обладающая непрерывными характеристиками частоты и интенсивности. Волна, дойдя до органов слуха, вызывает колебания, которые затем преобразуются мозгом в звуковой сигнал. На этом же принципе реализовано кодирование звуковой информации. Две формы представления В мире вся звуковая информация представлена в двух формах: Аналоговой – непрерывная плавная линия с различной амплитудой колебаний и частотой. Дискретной – ломаный отрезок, который имеет «ступеньки» различной высоты.

 Аналоговая форма записи используется в старых устройствах – магнитофонах, кассетных плеерах, патефонах. Здесь волны записываются на носитель в виде дорожки, а игла или звукопреобразующее устройство, «раздражаясь» от этих дорожек, воспроизводит звук. Сейчас практически все устройства используют двоичную систему счисления для воспроизведения звуковых сигналов. Компакт диски, флеш-карты, жесткие диски – все они хранят информацию в двоичном коде. Принцип чтения и записи при этом кардинально меняется.

Дискретизация звука Чтобы электронные устройства могли воспроизводить звук, необходимо записать его в понятном для машины виде, преобразовать в определенную последовательность символов 1 и 0. Этот процесс преобразования называется дискретизацией. Сам принцип кодирования состоит в следующем: Плавная линия разбивается на многочисленные маленькие временные отрезки так, что каждому участку начинает соответствовать определенная несоизмеримо малая прямая. Каждому отрезку присваивается определенная величина амплитуды, которую можно представить в виде прямоугольного треугольника: катеты определяют колебания звука для машины, а гипотенуза представляет аналоговую форму записи. Каждому такому треугольника присваивается определенный номер, который соответствует уровню громкости. На практике подобная информация представляется в виде гистограммы: высота каждого столбика соответствует амплитуде волны, а частота дискретизации, то есть размер временных отрезков, представлена шириной. Дискретизация звука гистограмма Соответственно, чем уже столбики, тем большее их количество понадобиться для записи информации, тем выше будет качество воспроизводимого сигнала, но и файл будет весить больше. Качество современной музыки, звука зависит от битрейта – количества бит, которое выделено для кодирования одной секунды звука. Таким образом, чем выше значение битрейта, тем лучше качество звука.

 

Вопрос 13.


Дата добавления: 2019-02-22; просмотров: 443; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!