ФИЗИЧЕСКАЯ РЕАЛИЗАЦИЯ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ В МЕСТЕ ОЗЗ



 

Переходное сопротивление Rп не влияет на фазовый угол между током I0 и напряжением U0 нулевой последовательности как в неповрежденной, так и в поврежденной линии, т.е. не искажает основных фазовых соотношений, на которые реагирует направленная токовая защита нулевой последовательности. Однако появление Rп снижает значения I0 и U0 и может по этой причине привести к отказу защиты в срабатывании.
Описанное переходное сопротивление Rп существенную роль играет лишь на воздушных ЛЭП, где применительно к компенсированным и резистивно-заземленным сетям складывается из сопротивлений следующих основных элементов:

  • заземления опоры с неисправным изолятором;
  • цепи протекания «обратного» тока ОЗЗ по земле от места замыкания до нейтрали источника питания;
  • заземляющего устройства на питающей подстанции.

Проведенные эксперименты показали, что при повреждении линейного изолятора суммарное значение переходного сопротивления Rп на частоте 50 Гц в некоторых случаях достигает 100–200 Ом. В основном оно носит активный характер и может оказать существенное влияние на переходные процессы ОЗЗ и снизить установившееся значение тока замыкания на землю.

 

При падении на землю оборвавшегося провода вместо первой указанной выше составляющей проявляются сопротивления:

  • предмета, на который упал провод (слой снега, льда, упавших листьев, ветка дерева и т.д.) и через который осуществляется контакт с землей;
  • полусферы «растекания тока» в месте контакта с землей.

Эти сопротивления сильно зависят от удельного сопротивления грунта, вида находящихся на поверхности земли предметов, на которые упал провод, погодных условий (дождь, снег), времени года и т.д.
В одном из экспериментов летом при падении провода на сухой песок отмечалось переходное сопротивление в месте ОЗЗ порядка 5–7 кОм. Зимой при падении провода на обледеневшую землю или в сугроб значение Rп может увеличиться в несколько раз, что и подтверждалось рядом экспериментов с участием автора настоящей статьи.
Ясно, что наличие в цепи протекания токов ОЗЗ такого большого по величине переходного сопротивления может привести к отказу защиты от ОЗЗ. В литературе предлагается совмещать защиту нулевой последовательности (например, направленную токовую) со специальной защитой от обрыва фазного провода, например, реагирующей на отношение I2 / I1, где I2– значение тока обратной последовательности в защищаемой линии; I1 – значение тока прямой последовательности. При этом каждая из разновидностей защит будет реагировать на «свою» часть повреждений. Чувствительная направленная защита нулевой последовательности обеспечит защиту воздушной ЛЭП при значениях Rп до 2–3 кОм, защита от обрывов – при больших значениях переходного сопротивления. Она же сработает, например, при обрыве «шлейфа», соединяющего между собой два пролета воздушной ЛЭП. Обрыв шлейфа в ветреную погоду, приводящий к его кратковременным соприкосновениям с опорой (что иногда случается на практике), без такой защиты едва ли удастся быстро выявить.

 

ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ НА ПАРАМЕТРЫ ПРОЦЕССОВ ПРИ ОЗЗ

 

Электрическая дуга также является своеобразным «переходным элементом» в месте ОЗЗ. Однако попытки учесть дугу во многих случаях не венчаются успехом.

 

1.Устойчивая дуга

 

Горящая в месте ОЗЗ устойчивая дуга обычно является мощным источником высокочастотных составляющих в напряжении U0 и токе I0. Отмечается, что в токе это влияние становится настолько заметным, что может привести, например, к излишнему срабатыванию защит неповрежденных линий. Для предотвращения таких срабатываний в современных устройствах защиты от ОЗЗ предусматриваются специальные гармонические фильтры.

Перемежающаяся дуга

 

Перемежающаяся дуга может возникать при ОЗЗ как на воздушных, так и на кабельных ЛЭП, но для кабельных линий она более характерна. По некоторым данным до 80% замыканий на кабельных линиях сопровождаются перемежающейся дугой. На воздушных ЛЭП таких замыканий в несколько раз меньше.
Анализом токов при ОЗЗ, сопровождающихся перемежающейся дугой, занимался ряд авторов. Однако по ряду причин (одна из них – низкое качество осциллографической аппаратуры на период выполнения работы) эти исследования велись в основном на математических моделях, хотя и с использованием имеющихся экспериментальных данных. К тому же авторы не ставили перед собой задачи исследовать поведение направленных токовых защит нулевой последовательности при наличии перемежающейся дуги. В связи с этим в настоящее время многие вопросы, связанные с поведением таких защит при дуговых замыканиях, так и остались невыясненными.
На рис. 1 показаны осциллограммы первичного и вторичного тока I0(t), полученные в процессе натурных экспериментов, на рис. 2 – осциллограммы напряжения U0(t) и тока I0(t).

Рис. 1. Осциллограммы первичного и вторичного тока I0(t), полученные в процессе натурных экспериментов

Рис. 2. Осциллограммы напряжения U0(t) и тока I0(t)

Из рисунков видно, что при дуговом замыкании:

  • осциллограмма напряжения содержит гораздо меньше высокочастотных составляющих, её проще «записать» и проанализировать;
  • ток I0(t) при ОЗЗ может на какое-то время прерываться, а затем дуга загорается вновь;
  • этот ток содержит большое количество высокочастотных составляющих;
  • сигналы при перемежающейся дуге могут иметь разный вид (в действительности это многообразие весьма велико).

Как отмечалось выше, в настоящее время процессы в сети при ОЗЗ, сопровождающихся перемежающимися дугами, и виды сигналов, поступающих при этом на направленную токовую защиту, недостаточно изучены.

Это объясняется рядом технических причин (если не говорить о чрезвычайно скудном финансировании такого рода работ):

  • многообразием разновидностей перемежающихся и прерывистых дуг. Вид дуги зависит, в частности, от того, где она горит – «открытая» дуга на воздухе, «закрытая» (например, в кабеле на начальной стадии ОЗЗ), от стадии процесса (особенно это заметно в кабеле), от режима заземления нейтрали сети и т.д.;
  • отсутствием достаточно совершенной теории, описывающей мгновенные значения токов и напряжений нулевой последовательности при различных видах перемежающихся дуг в сетях 6–35 кВ;
  • низким качеством кабельных трансформаторов тока, большим разбросом их характеристик и слабой проработанностью моделей измерительных трансформаторов и фильтров тока нулевой последовательности, а также трансформаторов напряжения, работающих в режимах перемежающихся дуговых замыканий;
  • сложностью получения качественных осциллограмм токов при натурных экспериментах с перемежающимися дугами (на рис. 1 видно, что некоторые пики токовых импульсов «обрезаны» из-за невысокого качества аналого-цифрового преобразователя осциллографа);
  • терминологическими трудностями (до сих пор среди специалистов нет единого мнения, какую дугу можно назвать перемежающейся и чем она отличается от прерывистой);
  • отсутствием теоретической базы, позволяющей адекватно обработать полученные в эксперименте сигналы (выделить гармонические составляющие, оценить основные параметры дуги, влияющие на поведение релейной защиты), и т.д.

Многообразие алгоритмов обработки сигналов I0(t) и U0(t) в различных устройствах защиты и нежелание разработчиков защит давать подробную информацию по этим алгоритмам дополнительно усложняют задачу.
Тем не менее, некоторые закономерности, влияющие на работу направленных защит от ОЗЗ, можно проанализировать.
Условимся перемежающимися дугами называть такие, в которых бестоковые паузы сравнительно коротки. За время паузы потенциал нейтрали не успевает снизиться до значения, близкого к нулю. При повторных пробоях возможна эскалация перенапряжений. Прерывистыми дугами будем называть такие, бестоковые паузы в которых велики, например, имеют продолжительность до 10 периодов промышленной частоты и более. К концу паузы потенциал нейтрали симметричной сети можно считать равным нулю.
При таких условиях осциллограммы, изображенные на рис.1, 2, соответствуют процессам с перемежающейся дугой. Очевидно, что представленные осциллограммы далеко не исчерпывают всего разнообразия перемежающихся дуг. Результаты описанных ниже исследований также не претендуют на широту обобщения, а являются скорее примерами, иллюстрирующими определенные тенденции.

 

Рис. 3. Спектральный состав тока нулевой последовательности в сети при ОЗЗ, сопровождающемся перемежающейся дугой

Рис. 4. Напряжение и ток нулевой последовательности при металлическом «прерывистом» ОЗЗ в сети при наличии заземляющего резистора

Рис. 5. Осциллограммы напряжений Uс(t) в фазе С, Ua(t)в фазе А и Un(t) – напряжения на нейтрали в процессе отключения ОЗЗ в фазе А

Рис. 6. Зависимость фазового угла от временив процессе замыкания на землю, сопровождающегося перемежающейся дугой

СПЕКТРАЛЬНЫЙ СОСТАВ ТОКА I0(t)

 

На рис. 3 приведен спектральный состав тока I0(t), полученный магистром  НГТУ   Касяном В.М. в процессе обработки одного из натурных экспериментов.

Из рисунка видны некоторые интересные особенности:

  • ток I0(t) содержит высокочастотные составляющие вплоть до 20-й гармоники и выше;
  • в спектре содержится большое количество «интергармоник» (т.е. существуют не только гармонические составляющие с частотой, кратной 50 Гц, но и с множеством промежуточных частот (практически – непрерывный спектр);
  • при перемежающейся дуге в токе I0(t) в значительном количестве присутствуют субгармоники (с частотой меньше 50 Гц).

Последнюю особенность необходимо учитывать при разработке гармонических фильтров, повсеместно используемых, например, в направленных токовых защитах от ОЗЗ. При выделении основной гармоники следует применять не фильтры-пробки высших частот, как это иногда делается, а полосовые фильтры. Кроме того, наличие в сети субгармоник с частотами, лежащими в пределах 15–25 Гц, может привести к неселективной работе некоторых защит от ОЗЗ, выполненных на наложенном токе 16,7–25 Гц.                          Это, по-видимому, относится не только к защитам линий, но и, например, к защитам от ОЗЗ генераторов, если эти генераторы работают на сборные шины, гальванически соединенные с сетью, и имеют защиту от ОЗЗ с наложенным током соответствующей частоты. Возникающие при ОЗЗ синусоидальные составляющие с частотой, например, 25 Гц могут иметь произвольные углы относительно «наложенных» токов той же частоты, вызванных искусственным источником, и различные амплитуды. Наложение одних сигналов на другие, если не предпринять соответствующих мер, может привести к неселективному действию защит.

 


Дата добавления: 2019-02-22; просмотров: 220; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!