ФИЗИОЛОГИЯ ЦЕЛОСТНОГО ОРГАНИЗМА 6 страница




образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбуди­мости при длительном действии подпорогового раздражителя назы­вается аккомодацией. При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.

Скорость нарастания интенсивности раздражителя имеет суще­ственное значение при определении возбудимости ткани, поэтому чаще всего используют импульсы прямоугольной формы (импульс тока прямоугольной формы имеет максимальную крутизну нараста­ния) . Замедление скорости изменения амплитуды раздражителя при­водит к тому, что происходит инактивация натриевых каналов вследствие постепенной деполяризации клеточной мембраны, а сле­довательно, к падению возбудимости.

Увеличение силы стимула до порогового значения приводит к генерации потенциала действия (рис. 2.14, В).

Под анодом при действии сильного тока происходит изменение уровня критического потенциала, в противоположном направле­нии — вниз (рис. 2.14, Д). При этом уменьшается разность меж­ду критическим потенциалом и мембранным потенциалом, т. е. возбудимость под анодом при длительном действии тока повыша­ется.

Очевидно, что увеличение значения тока до пороговой величины приведет к тому, что возбуждение будет возникать под катодом при замыкании цепи. Следует подчеркнуть, что этот эффект может


быть выявлен в случае продолжительного действия электрического тока. При действии достаточно сильного тока смещение критического потенциала под анодом может быть весьма существенным и достигать первоначального значения мембранного потенциала. Выключение тока приведет к тому, что гиперполяризация мембраны исчезнет, мембранный потенциал вернется к первоначальному значению, а это соответствует величине критического потенциала, т. е. возникает анодно-размыкательное возбуждение.

Изменение возбудимости и возникновение возбуждения под ка­тодом при замыкании и анодом при размыкании носит название закона полярного действия тока. Экспериментальное подтвержде­ние этой зависимости впервые было получено Пфлюгером еще в прошлом веке.

Как указывалось выше, существует определенное соотношение между временем действия раздражителя и его амплитудой. Эта зависимость в графическом выражении получила название кривой «сила—длительность» (рис. 2.15). Иногда по имени авторов ее на­зывают кривой Гоорвега—Вейса—Лапика. На этой кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от про­должительности времени, в течение которого действует этот раз­дражитель, а минимальная величина тока, вызывающая возбужде­ние, получила название порога раздражения, или реобазы. Величина реобазы определяется разностью между критическим потенциалом и мембранным потенциалом покоя.

С другой стороны, раздражитель должен действовать не меньше определенного времени. Уменьшение времени действия раздражи­теля ниже критического значения приводит к тому, что раздражитель любой интенсивности не оказывает эффекта. Для характеристики возбудимости ткани по времени ввели понятие порога времени — минимальное (полезное) время, в течение которого должен действовать раздражитель пороговой силы с тем, чтобы вызвать возбуждение (отрезок АС на рис. 2.15).

Порог времени определяется емкостной и резистивной характе­ристикой клеточной мембраны, т. е. постоянной времени T = R*C.

В связи с тем что величина реобазы может изменяться, особенно в естественных условиях, и это может привести к значительной погреш­ности в определении порога времени, Лапик ввел понятие хронаксии для характеристики временных свойств клеточных мембран. Хронак-сия — время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение. Использование этого критерия позволяет точно измерить временные характеристики воз­будимых структур, поскольку измерение происходит на крутом изгибе гиперболы (отрезок AD на рис. 2.15).

Хронаксиметрия используется при оценке функционального со­стояния нервно-мышечной системы у человека. При ее органических поражениях величина хронаксии и реобазы нервов и мышц значи­тельно возрастает.

Таким образом, при оценке степени возбудимости возбудимых


структур используют количественные характеристики раздражите­ля — амплитуду, продолжительность действия, скорость нарастания амплитуды. Следовательно, количественная оценка физиологиче­ских свойств возбудимой ткани производится опосредованно по характеристикам раздражителя.

Переменный ток. Эффективность действия переменного тока определяется не только амплитудой, продолжительностью воздей­ствия, но и частотой. При этом низкочастотный переменный ток, например частотой 50 Гц (сетевой), представляет наибольшую опасность при прохождении через область сердца. В первую оче­редь это обусловлено тем, что при низких частотах возможно попадание очередного стимула в фазу повышенной уязвимости миокарда (см. главу 7) и возникновение фибрилляции желудочков сердца. Действие тока частотой выше 10 кГц представляет мень­шую опасность, поскольку длительность полупериода составляет 0,05 мс. При такой длительности импульса мембрана клеток вслед­ствие своих емкостных свойств не успевает деполяризоваться до критического уровня. Токи большей частоты вызывают, как пра­вило, тепловой эффект.

2.2. ФИЗИОЛОГИЯ НЕРВНОЙ ТКАНИ

2.2.1. Строение и морфофункциональная классификация нейронов

Структурной и функциональной единицей нервной системы яв­ляется нервная клетка — нейрон.

Нейроны — специализированные клетки, способные прини­мать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенно­стями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов.


Выполнению функций нейрона способствует синтез в его аксо-плазме веществ-передатчиков — нейромедиаторов (нейротрансмит-теры): ацетилхолина, катехоламинов и др.

Размеры нейронов колеблются от 6 до 120 мкм.

Число нейронов мозга человека приближается к 10й. На одном нейроне может быть до 10 000 синапсов. Если только эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 1019 ед. информации, т. е. способна вместить практически все знания, накопленные человече­ством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из памяти всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.

Клеточные скопления образуют серое вещество мозга. Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.

Одно нервное волокно из нижележащих структур мозга в коре разветвляется на нейроны, занимающие объем 0,1 мм3, т. е. одно нервное волокно может возбудить до 5000 нейронов. В постнатальном развитии происходят определенные изменения в плотности распо­ложения нейронов, их объема, ветвления дендритов.

Строение нейрона. Функционально в нейроне выделяют следу­ющие части: воспринимающую — дендриты, мембрана сомы нейрона; интегративную — сома с аксонным холмиком; передающую — аксонный холмик с аксоном.

Тело нейрона (с ом а), помимо информационной, выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальней перерезки, а следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.

Сома нейрона заключена в многослойную мембрану, обеспечи­вающую формирование и распространение электротонического по­тенциала к аксонному холмику.

Нейроны способны выполнять свою информационную функцию в основном благодаря тому, что их мембрана обладает особыми свойствами. Мембрана нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул, которые своими гидрофильными кон­цами обращены в сторону водной фазы: один слой молекул обращен внутрь, другой — кнаружи клетки. Гидрофобные концы повернуты друг к другу — внутрь мембраны. Белки мембраны встроены в двойной липидный слой и выполняют несколько функций: белки-"насосы" обеспечивают перемещение ионов и молекул против гра­диента концентрации в клетке; белки, встроенные в каналы, обес-


печивают избирательную проницаемость мембраны; рецепторные белки распознают нужные молекулы и фиксируют их на мембране; ферменты, располагаясь на мембране, облегчают протекание хими­ческих реакций на поверхности нейрона. В ряде случаев один и тот же белок может быть и рецептором, и ферментом, и «насосом».

Рибосомы располагаются, как правило, вблизи ядра и осущест­вляют синтез белка на матрицах тРНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью пластинчатого комплекса и образуют базофильное вещество.

Базофильное вещество (вещество Ниссля, тигроидное вещество, тигроид) — трубчатая структура, покрытая мелкими зернами, со­держит РНК и участвует в синтезе белковых компонентов клетки. Длительное возбуждение нейрона приводит к исчезновению в клетке базофильного вещества, а значит, и к прекращению синтеза спе­цифического белка. У новорожденных нейроны лобной доли коры большого мозга не имеют базофильного вещества. В то же время в структурах, обеспечивающих жизненно важные рефлексы — спин­ном мозге, стволе мозга, нейроны содержат большое количество базофильного вещества. Оно аксоплазматическим током из сомы клетки перемещается в аксон.

Пластинчатый комплекс (аппарат Гольджи) — органелла ней­рона, окружающая ядро в виде сети. Пластинчатый комплекс уча­ствует в синтезе нейросекреторных и других биологически активных соединений клетки.

Лизосомы и их ферменты обеспечивают в нейроне гидролиз ряда веществ.

Пигменты нейронов — меланин и липофусцин находятся в нейронах черного вещества среднего мозга, в ядрах блуждающего нерва, клетках симпатической системы.

Митохондрии — органеллы, обеспечивающие энергетические по­требности нейрона. Они играют важную роль в клеточном дыхании. Их больше всего у наиболее активных частей нейрона: аксонного холмика, в области синапсов. При активной деятельности нейрона количество митохондрий возрастает.

Нейротрубочки пронизывают сому нейрона и принимают участие в хранении и передаче информации.

Ядро нейрона окружено пористой двухслойной мембраной. Через поры происходит обмен между нуклеоплазмой и цитоплазмой. При активации нейрона ядро за счет выпячиваний увеличивает свою поверхность, что усиливает ядерно-плазматические отношения, сти­мулирующие функции нервной клетки. Ядро нейрона содержит гене­тический материал. Генетический аппарат обеспечивает дифферен-цировку, конечную форму клетки, а также типичные для данной клетки связи. Другой существенной функцией ядра является регуля­ция синтеза белка нейрона в течение всей его жизни.

Ядрышко содержит большое количество РНК, покрыто тонким слоем ДНК.

Существует определенная зависимость между развитием в онто­генезе ядрышка и базофильного вещества и формированием пер-


вичных поведенческих реакций у человека. Это обусловлено тем, что активность нейронов, установление контактов с другими ней­ронами зависят от накопления в них базофильного вещества.

Дендриты — основное воспринимающее поле нейрона. Мем­брана дендрита и синаптической части тела клетки способна реа­гировать на медиаторы, выделяемые аксонными окончаниями из­менением электрического потенциала.

Обычно нейрон имеет несколько ветвящихся дендритов. Необ­ходимость такого ветвления обусловлена тем, что нейрон как ин­формационная структура должен иметь большое количество входов. Информация к нему поступает от других нейронов через специа­лизированные контакты, так называемые шипики.

«Шипики» имеют сложную структуру и обеспечивают восприятие сигналов нейроном. Чем сложнее функция нервной системы, чем больше разных анализаторов посылают информацию к данной струк­туре, тем больше «шипиков» на дендритах нейронов. Максимальное количество их содержится на пирамидных нейронах двигательной зо­ны коры большого мозга и достигает нескольких тысяч. Они занимают до 43% поверхности мембраны сомы и дендритов. За счет «шипиков» воспринимающая поверхность нейрона значительно возрастает и мо­жет достигать, например у клеток Пуркинье, 250 000 мкм .

Напомним, что двигательные пирамидные нейроны получают информацию практически от всех сенсорных систем, ряда подкор­ковых образований, от ассоциативных систем мозга. Если данный «шипик» или группа «шипиков» длительное время перестает полу­чать информацию, то эти «шипики» исчезают.

Аксон представляет собой вырост цитоплазмы, приспособлен­ный для проведения информации, собранной дендритами, перера­ботанной в нейроне и переданной аксону через аксонный холмик — место выхода аксона из нейрона. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиновую оболочку, образованную из глии. Аксон имеет разветвленные окон­чания. В окончаниях находятся митохондрии и секреторные об­разования.

Типы нейронов. Строение нейронов в значительной мере со­ответствует их функциональному назначению. По строению ней­роны делят на три типа: униполярные, биполярные и мультипо-лярные.

Истинно униполярные нейроны находятся только в мезэнцефалическом ядре тройничного нерва. Эти нейроны обеспе­чивают проприоцептивную чувствительность жевательных мышц.

Другие униполярные нейроны называют псевдоуниполяр­ными, на самом деле они имеют два отростка (один идет с пери­ферии от рецепторов, другой — в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спи-нальных, тройничном и т. д. Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации.


Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном — с нейроном следующего уровня организации соответствующей сенсорной системы.

Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они пред­ставляют разновидности веретенообразных, звездчатых, корзинча-тых и пирамидных клеток.

Обмен веществ в нейроне. Необходимые питательные вещества и соли доставляются в нервную клетку в виде водных растворов. Продукты метаболизма также удаляются из нейрона в виде водных растворов.

Белки нейронов служат для пластических и информационных целей. В ядре нейрона содержится ДНК, в цитоплазме преобладает РНК. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых струк­турах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше — в мозжечке, наименьшая — в спинном мозге.

Липиды нейронов служат энергетическим и пластическим мате­риалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление, достигающее у некоторых нейронов 1000 Ом/см2 поверхности. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается.

Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит глюкоза крови.

Глюкоза расщепляется в нейроне аэробным и анаэробным путем. Расщепление идет преимущественно аэробным путем, этим объяс­няется высокая чувствительность нервных клеток к недостатку кис­лорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. При нар­козе потребление углеводов снижается.

В нервной ткани содержатся соли калия, натрия, каль­ция, магния и др. Среди катионов преобладают К+, Na+, Mg +, Са2+; из анионов — СГ, НСОз. Кроме того, в нейроне имеются различные микроэлементы (например, медь и марганец). Благодаря высокой биологической активности они активируют ферменты. Ко­личество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди, марганца в нейроне резко снижается.


Обмен энергии в нейроне в состоянии покоя и возбуждения различен. Об этом свидетельствует значение дыхательного коэффи­циента в клетке. В состоянии покоя он равен 0,8, а при возбуж­дении — 1,0. При возбуждении потребление кислорода возрастает на 100%. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз.

Собственные энергетические процессы нейрона (его сомы) тесно связаны с трофическими влияниями нейронов, что сказывается преж­де всего на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон.

Классификация нейронов. Существует классификация нейронов, учитывающая химическую структуру выделяемых в оконча­ниях их аксонов веществ: холинергические, пептидергические, норад-реналинергические, дофаминергические, серотонинергические и др.

По чувствительности к действию раздражите­лей нейроны делят на моно-, би-, полисенсорные.

Моносенсорные нейроны. Располагаются чаще в первичных про­екционных зонах коры и реагируют только на сигналы своей сен-сорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на све­товое раздражение сетчатки глаза.

Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут ре­агировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реа­гирующие на два разных тона, называются бимодальными, на три и более — полимодальными.

Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зри­тельные и слуховые раздражения.

Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.

Нервные клетки разных отделов нервной системы могут быть активными вне воздействия — фоновые, или фоновоактив-н ы е (рис. 2.16). Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение.


Дата добавления: 2019-02-13; просмотров: 217; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!