Правильное питание – залог здоровья



 

О питании электронных устройств

 

 

Мы ежедневно просовываем ему через отдушину хлеб на вилах, а когда он требует, то и мясо, но – увы! – не хлеб и не мясо составляют главную его пищу.

А. Дюма . Три мушкетера

 

 

О том, что трансформаторы вкупе с фильтрующими конденсаторами зачастую составляют основную часть массы и габаритов современных электронных устройств, известно всем. Реальных альтернатив обычным линейным трансформаторным источникам питания всего, в сущности, две (экзотику вроде солнечных батарей мы рассматривать не будем). Самую распространенную составляют электрохимические источники тока (батареи и аккумуляторы), с которых мы и начнем. Об импульсных источниках питания, получающих все большее распространение, мы кратко поговорим в конце главы.

 

 

Электрохимические элементы

Главное преимущество электрохимических (гальванических) элементов – мобильность, в чем им замены нет. Главный недостаток – они не обеспечивают долговременной эксплуатации для подавляющего большинства электронных устройств, за исключением специально спроектированных малопотребляющих либо редко используемых – таких, как наручные часы, пульты управления бытовой техникой или наши любимые мультиметры. В любом случае правильный выбор типа электрохимического источника – довольно важное дело.

Из всех электрохимических элементов для наших целей актуальнее всего щелочные пальчиковые батарейки. Вообще говоря, батарейками их называть неправильно – батарея, по определению, есть несколько элементов, соединенных в единый источник: так, батарейка типоразмера «Крона» – это действительно батарейка, а пальчиковая АА‑типа – всего лишь элемент (о типоразмерах и характеристиках различных гальванических элементов см. приложение 2 ). Но в быту их принято называть именно так, и мы тоже будем следовать традиции, употребляя вперемешку слова «элемент» и «батарейка».

Номинальное напряжение щелочных (alkaline ) элементов – 1,5 В (у свежих элементов без нагрузки – 1,62 В). Для некоторых целей (например, в качестве резервных источников питания) в радиолюбительской практике используются литиевые батарейки‑«монетки» с номинальным напряжением 3 В, но в качестве основных, кроме очень малопотребляющих устройств, их применять не рекомендуется из‑за более высокой стоимости. Литиевые аналоги мощных щелочных элементов типоразмеров С или D на массовом рынке отсутствуют, а появившиеся в последнее время литиевые элементы типоразмера АА и ААА весьма неплохи, хотя пока и довольно дороги.

Основное отличие литиевых элементов от щелочных заключается в характере снижения напряжения по мере истощения – литиевые держат напряжение практически на номинальном уровне до последнего момента, после чего оно быстро падает до нуля (рис. 9.1).

 

 

Рис. 9.1. Сравнительные разрядные характеристики литиевых и щелочных ААА‑элементов при малых токах

(по данным фирмы Energizer )

 

Литиевые элементы имеют исключительно низкий саморазряд (срок хранения в 12–15 лет для них типичен), высокую морозоустойчивость и могут быть рекомендованы для малопотребляющих или относительно редко включающихся устройств в жестких условиях эксплуатации. Следует также учесть, что из‑за низкого внутреннего сопротивления литиевые лучше всего себя проявляют при работе на мощную или импульсную нагрузку. В таком режиме они покажут гораздо большее время работы, чем щелочные, и практически сравняются с последними по стоимости в расчете на каждый ватт‑час, в то время как в низкопотребляющих приборах щелочные по емкости от них почти не отличаются, зато гораздо дешевле.

Важнейшей характеристикой электрохимических элементов является их энергоемкость . Для электрохимических источников ее традиционно измеряют в миллиампер‑часах (мА·ч). Эта величина, умноженная на напряжение элемента или батареи, даст энергию элемента в милливатт‑часах, т. е. абсолютное количество энергии, запасенное в элементе (если дополнительно умножить на коэффициент 3,6, то получится энергия в привычных джоулях). Но в джоулях, милливатт‑часах или ватт‑часах для наших нужд энергию измерять неудобно, т. к. само напряжение элемента в процессе разряда меняется, и существенно (см. графики на рис. 9.2 и 9.3, представляющие процесс разряда во времени). Зато выраженная в миллиампер‑часах энергоемкость легко поддается измерению и расчету – достаточно поделить эту величину на средний потребляемый устройством ток, и получится допустимое время работы устройства.

 

 

Рис. 9.2. Типовые разрядные кривые щелочного элемента типоразмера D при 20 °C и различных сопротивлениях нагрузки

(по данным Duracell/Procter & Gamble )

 

 

Рис. 9.3.  Типовые разрядные кривые щелочного элемента типоразмера АА при 20 °C и различных сопротивлениях нагрузки

(по данным Duracell/Procter & Gamble )

 

Некоторые типовые разрядные кривые для различных элементов и режимов показаны на рис. 9.1–9.3. Такие графики приводятся в документации, которую можно разыскать на сайтах производителей, и с их помощью уточнить энергоемкость. При необходимости подобные данные несложно получить и самостоятельно, замкнув элемент на нужное сопротивление в требуемых условиях и периодически отмечая напряжение. Для того чтобы получить из этих данных энергоемкость в миллиампер‑часах (мА‑ч), следует поделить среднее за время разряда значение напряжения на нагрузку в омах и умножить на время. Так, для элемента АА при разряде до 0,9 В и нагрузке 43 Ом время разряда равно 100 часам, среднее значение напряжения составит примерно 1,25 В, т. е. средний ток разряда будет около 30 мА. Итого энергоемкость при этих условиях приблизительно равна 3000 мА‑ч. А вот при нагрузке 3,9 Ом (средний ток – примерно 320 мА) энергоемкость будет всего около 2200 мА‑ч.

Ориентировочная удельная энергоемкость щелочных элементов – примерно 300 мА‑ч на см3. Таким образом, энергоемкость батареек типоразмера АА – около 2200–2500 мА‑ч, типоразмера ААА – 1000–1200 мА‑ч, примерно столько же дают пальчиковые (NiMH) аккумуляторы тех же размеров (о них далее). Для щелочного элемента типоразмера D энергоемкость составит 15–18 А‑ч, для типоразмера С – вполовину меньше. Для аналогичных «обычных» батареек (их еще называют солевыми ) – энергоемкость в три раза меньше, чем у щелочных. Для щелочных 9‑вольтовых батареек типоразмера «Крона» энергоемкость составляет приблизительно 500–600 мА‑ч, зато литиевый аналог (1604LC) имеет вдвое большую энергоемкость и, несмотря на дороговизну, может быть всячески рекомендован для устройств вроде тестеров, которые в основном хранятся без дела.

Однако эти ориентировочные цифры очень приблизительные вследствие того, что энергоемкость элемента сильно зависит от условий разряда, – так, если при разрядном токе 0,1 А считать емкость щелочного элемента за номинальную, то при разряде вдесятеро большим током (1 А) она может упасть в полтора‑два, а то и в три раза (в зависимости от типа элемента), а при снижении тока до 1 мА, наоборот, возрастает на 30–50 %. Самый выгодный режим разряда для щелочных элементов – прерывистый: если батарейке периодически давать «отдохнуть», то даже при больших токах ее емкость почти не снижается. Кроме того, многое зависит от допустимого конечного напряжения. Например, если схема допускает минимальное напряжение питания 2,7 В, что при питании от трех щелочных элементов означает конечное напряжение 0,9 В на каждый элемент, то емкость окажется почти на четверть выше, чем при допустимом конечном напряжении 3,3 В (по 1,1 В на элемент). Надо также учитывать, что при снижении температуры до 0 °C энергоемкость щелочных элементов падает на величину от 25 до 50 % (а вот литиевые тот же результат показывают только при ‑20°).

При этом для щелочных элементов напряжение в начале разряда при постоянной нагрузке очень быстро падает с начальных 1,5–1,6 В до 1,3–1,4 В, а затем снижается уже более плавно (для литиевых падение в процессе разряда меньше, зато в конце они разряжаются до нуля почти скачком). Для батареек типоразмера «Крона» напряжение в конце разряда составляет приблизительно 5–6 В. Внутреннее сопротивление щелочных батареек составляет вначале порядка 0,12‑0,17 Ом (для «Кроны» – до 1,7 Ом) и быстро растет по мере разряда.

По этим сведениям вы можете прикинуть необходимый тип питающих элементов для вашей схемы. Следует добавить, что при включении электрохимических элементов последовательно их энергоемкости, выраженные в миллиампер‑часах, естественно, не складываются, а остаются теми же (при этом их энергии, выраженные в ватт‑часах, суммируются). А параллельное включение электрохимических элементов практикуется только в исключительных случаях, если нет другого выхода. Из‑за разброса параметров по технологическим причинам в этом случае они заметную часть времени будут работать друг на друга, особенно в конце разряда. У полностью разряженных щелочных элементов даже возможна переполюсовка выводов (и такой режим опасен для сохранности устройства). Энергоемкость параллельно включенных элементов (естественно, одного типа и из одной партии) будет на четверть‑треть меньше суммарной емкости тех же элементов по отдельности. Развязка таких элементов через диоды помогает обезопасить устройство от протечек электролита и деформации элементов при глубоком разряде, но зато вы будете терять драгоценные доли вольта падения на диодах (даже диоды Шоттки «съедают» не менее 0,3–0,4 В). В результате выигрыш окажется не настолько большим, чтобы отказаться от идеи просто поставить элемент побольше размером.

 

 

Аккумуляторы

У любых типов аккумуляторов, в отличие от одноразовых элементов, намного выше саморазряд при хранении, а в остальном характеристики современных пальчиковых (NiMH) аккумуляторов практически такие же, как у щелочных одноразовых батареек, разве что номинальное напряжение несколько ниже – 1,3 В против 1,5 В у щелочных. Но давайте немного разберемся, какие вообще бывают аккумуляторы, ибо они существенно различаются по свойствам, и каждый тип оптимален для применения в своей области.

Аккумуляторы встречаются кислотные, щелочные, никель‑кадмиевые (NiCd), никель‑металлгидридные (NiMH), литий‑ионные (Li‑ion), и еще попадаются литий‑полимерные (Li‑pol). Кроме перечисленных, существует еще море разновидностей аккумуляторов (в теории любая электрохимическая реакция обратима и может использоваться как для выработки электрического тока, так и для откладывания его «про запас»), но на рынке доминируют именно эти типы.

Кислотные аккумуляторы правильнее называть свинцово‑кислотными (Lead‑Acid, СКА), но других кислотных, кроме как на основе свинца, в быту вы не встретите. Это, вероятно, самая древняя разновидность аккумуляторов – первый работоспособный СКА был создан аж в 1859 году. В начале XX века выяснилось, что именно этот тип аккумуляторов неплохо подходит для того, чтобы крутить стартер автомобиля, и с тех пор их производят десятками миллионов.

Еще лет двадцать назад автомобильные аккумуляторы были весьма капризными и даже несколько опасными для здоровья – конструкторы никак не могли справиться с выделением газов, сопровождающим процесс заряда. Из‑за этого СКА приходилось делать негерметичными, а электролитом в них, между прочим, служит серная кислота, которую периодически требовалось доводить до нужной плотности дистиллированной водой – занятие, мягко говоря, небезопасное. С тех пор СКА значительно облагородились, стали герметичными и необслуживаемыми, но в основе они все те же, что тридцать и пятьдесят лет назад. У них низкая удельная энергоемкость (30–50 Вт‑ч/кг в самых лучших образцах), и они боятся глубокого разряда, отчего в процессе хранения их надо все время подзаряжать.

Зато у СКА высокая перегрузочная способность – стартерная батарея даже на морозе без особых усилий отдает ток в несколько сотен ампер, необходимый для того, чтобы прокрутить холодный двигатель. При этом СКА дешевы и относительно неплохо держат заряд – хороший автомобильный аккумулятор разряжается в среднем на 5 % в месяц или на 50 % за год. Именно этот тип аккумуляторов традиционно используется в источниках бесперебойного питания (ИБП). Так как там батареи пребывают в тепличных условиях (постоянно подзаряжаются), то срок службы аккумуляторов в ИБП может достигать 5–7 лет.

СКА заряжать довольно просто (они не очень боятся перезаряда), автоматические зарядники для автомобильных СКА доступны каждому. В радиолюбительской практике герметизированные СКА можно рекомендовать для питания мощных устройств (например, содержащих электродвигатели).

Для никель‑кадмиевых (NiCd) аккумуляторов также характерна высокая нагрузочная способность (хотя и поменьше, чем для СКА), но есть у них и три капитальных недостатка. Первый: относительно малая удельная энергоемкость (хотя й несколько большая, чем у СКА) – 45–60 Вт‑ч/кг. Второй: нелюбовь к зарядке не «с нуля» – так называемый эффект памяти. Третий: высокий саморазряд – до 10 % в первые сутки, потом около 10 % в месяц.

Правильный режим зарядки NiCd‑аккумуляторов – сначала полная разрядка (формально – до напряжения 1 В на элемент), а потом уже полная зарядка. Потому для NiCd‑аккумуляторов рекомендуется вырабатывать заряд до полного «умирания» устройства – редкие зарядные устройства позволяют себе тратить время на предварительную разрядку. «Фирменная» зарядка производится до достижения определенного напряжения с дополнительным контролем по температуре (так работают зарядники, например, к дорогому электроинструменту). Более простой способ – заряжать определенным током в течение конкретного времени. Это лишний аргумент для того, чтобы предварительно разряжать батарею, потому что иначе определить необходимое время затруднительно. Правда, и умеренной перезарядки NiCd‑аккумуляторы боятся меньше, чем рассматриваемые далее NiMH.

NiCd‑аккумуляторы традиционно используются там, где требуется высокая нагрузочная способность и большой кратковременный ток. В первую очередь это электроинструмент, снабжаются такими аккумуляторами и профессиональные ТВ‑камеры, шахтерские фонари или мобильные радиостанции. Одно из крупных преимуществ NiCd – это единственный тип, который без последствий может храниться полностью разряженным.

Никель‑металлгидридные (NiMH) – это все пальчиковые аккумуляторы, которые продаются в киосках. Номинальная емкость для элементов одного размера различается, и обычно написана на ник большими буквами. Когда‑то эту нишу занимали NiCd (они еще выпускались с этикетками на белом фоне, чтобы отличить от батареек), но «зеленые» настояли, и теперь NiCd можно приобрести лишь в специализированных точках продаж. Конечно, дело не только в загрязнении окружающей среды – NiMH‑аккумуляторы имеют большую, чем NiCd, удельную емкость (60‑120 Вт‑ч/кг) и не склонны к «эффекту памяти», потому заряжать их можно не обязательно «с нуля». Зато они боятся глубокого разряда (хотя и не в такой степени, как СКА), и хранить их надо хотя бы частично заряженными. При этом они имеют самый высокий из всех типов саморазряд (вдвое больше, чем у NiCd) и страшно не любят перезарядки, потому что сильно нагреваются в конце процесса заряда (это, кстати, может служить одним из признаков того, что зарядку пора заканчивать). Типичные кривые зависимости напряжения от времени работы для таких аккумуляторов показаны на рис. 9.4.

 

 

Рис. 9.4. Типовые разрядные кривые NiMH ‑аккумулятора типоразмера АА емкостью 2200 мА‑ч при 20 °C

(по данным Energizer Holdings , Inc.)

 

Как ни старались, но заставить NiMH отдавать большой импульсный ток при перегрузках не удалось. Тем не менее, NiMH‑элементы сейчас наиболее распространены среди универсальных аккумуляторов для бытовой электронной аппаратуры, исключая только такую, где зарядное устройство целесообразно встроить в сам прибор или «бесплатно» прикладывать к нему. Дело в том, что Li‑ion‑разновидность, о которой пойдет речь далее, абы как заряжать решительно не рекомендуется, и лишь «фирменный» зарядник гарантирует, что все будет как надо.

Прежде всего отметим главную, и очень удобную черту литий‑ионных (Li‑ion) аккумуляторов – никакого «эффекта памяти» они не имеют, и вообще никакой профилактики (в виде специальной «тренировки» при хранении) не требуют. Но это мало помогает – Li‑ion отличаются еще и тем, что портятся просто при хранении практически так же, как и во время эксплуатации. А вот будете ли вы их разряжать до конца или подзаряжать каждые полчаса – от этого почти ничего не зависит (допустимое число циклов заряд‑разряд превышает 1000), причем частая дозарядка для этого типа даже предпочтительнее, т. к. хранить их полагается в заряженном виде.

Li‑ion‑аккумуляторы отличаются большой энергоемкостью (110–160 Вт‑ч/кг) и малым саморазрядом – менее 10 % в месяц, причем около трети этой величины обусловлено потреблением встроенных схем защиты. Схемы защиты нужны потому, что эти аккумуляторы совершенно не выносят перезаряда и при нарушении режима просто взрываются без предупреждения. Li‑ion также плохо относятся к низким температурам. Все эти качества в совокупности и обусловили область применения Li‑ion – для мобильных устройств с собственным зарядным устройством (сотовые телефоны, ноутбуки и т. п., в последнее время ими также стал снабжаться электроинструмент).

Литий‑полимерные (Li‑pol) аккумуляторы – разновидность Li‑ion, которая отличается в худшую сторону тем, что совершенно не выносит низких температур (ниже 0 °C они отказываются работать) и имеет меньшую долговечность (100–200 циклов заряд‑разряд). Зато они имеют «твердый» электролит, похожий на обычную пластиковую пленку, что позволяет делать батареи очень тонкими (до 1 мм), гибкими или имеющими произвольную форму. В силу этого обстоятельства аккумуляторы Li‑pol нашли широкое применение, например, в планшетах. Использования литий‑ионных аккумуляторов в радиолюбительской практике мы здесь не будем касаться – это совершенно отдельная тема.

* * *

 

Зарядка аккумуляторов

В радиолюбительской практике и в быту обычно приходится самостоятельно заряжать универсальные аккумуляторы: пальчиковые NiMH или, изредка, NiCd‑разновидности Самому сооружать для них зарядные устройства бессмысленно, проще и дешевле их приобрести. В любом случае лучше не использовать дешевый блок зарядки без автоматики, внутри которого всего только и есть, что диод да ограничивающий ток резистор. Взрываться такие аккумуляторы, скорее всего, не станут, а вот перезаряда они не любят и быстро от этого портятся (NiCd, в частности, имеют привычку при регулярной перезарядке вздуваться). Если все же вам жаль потратиться на приличный «интеллектуальный» зарядник фирмы AcmePower или Sony , то покупайте хотя бы такой, который имеет таймер для своевременного выключения. Правда, таймер обычно рассчитывается на «среднепотолочную» емкость, но в описании к заряднику должно быть указано, на какую емкость номинально он рассчитан.

Как правильно рассчитать время заряда, если у вас нет «умного» зарядника или емкость отличается от номинальной? Просто поделите энергоемкость аккумулятора (в мА‑ч) на зарядный ток, который выдает ваше устройство (в мА), и вы получите время в часах, которое нужно умножить примерно на 1,3–1,4. Если величина тока не указана, то в инструкции обычно приводится таблица времени зарядки в зависимости от емкости, тогда ток можно ориентировочно подсчитать самостоятельно, можно и попытаться померить его мультиметром. Обычный «универсальный» режим заряда, который не может повредить никакому аккумулятору (кроме, конечно, литиевых), предполагает зарядку током в одну десятую от емкости – например, АА‑тип емкостью 2000 мА‑ч надо заряжать 13–14 часов током 200 мА. Разумеется, этот расчет относится к полностью разряженному аккумулятору, т. к. точный расчет времени при частичном разряде – задача практически нерешаемая.

 


Дата добавления: 2019-02-12; просмотров: 209; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!