Особенности ключевого режима на высокой частоте



В силу того, что у прямоугольного импульса, как сказано в главе 5 , верхняя частота неограниченна, может создаться искушение выбирать как можно более высокочастотные приборы. Но это не вполне разумно – достаточно выбрать компоненты с рабочей частотой примерно в 10–20 раз выше, чем основная частота прямоугольных сигналов.

Быстродействие ключевых схем с общим эмиттером все равно будет существенно ниже ожидаемого, причем повышение частотных свойств транзистора не сильно поможет, и вот почему.

Если ток базы увеличить скачком, то нарастание тока коллектора будет происходить не сразу, а по кривой, аналогичной показанной на рис. 6.1 (если бы по оси абсцисс откладывалось не напряжение, а время). Иными словами, вывод биполярного транзистора из состояния насыщения занимает определенное время, а форма прямоугольных импульсов на коллекторной нагрузке весьма сильно искажается. Это не будет иметь существенного значения для низкочастотных схем, рассматриваемых в этой книге, но может доставить много неприятностей, если вы попробуете, например, с помощью простого ключевого каскада управлять передачей импульсов в скоростных линиях связи. В свое время преодоление этого эффекта доставило немало хлопот конструкторам транзисторных логических схем. Для того чтобы обойти эту неприятность, существует несколько способов держать запертый транзистор на грани насыщения, но мы их в этой книге рассматривать не будем – ныне для упомянутых целей существуют готовые решения в интегральном исполнении.

 

* * *

Если у диодов определяющих критериев всего три (допустимый прямой ток, допустимое обратное напряжение и допустимая выделяющаяся мощность), то у транзисторов их много больше.

Приведем часть из них:

□ допустимый ток коллектора;

□ допустимый ток базы;

□ допустимая мощность на коллекторе (стоке);

□ допустимое напряжение коллектор‑эмиттер (сток‑исток);

□ допустимое напряжение коллектор‑база (сток‑затвор);

□ допустимое обратное напряжение база‑эмиттер и др.

Самыми критичными являются опять же три: допустимый ток коллектора, допустимая мощность на коллекторе и допустимое напряжение коллектор‑эмиттер. Допустимое обратное напряжение база‑эмиттер (т. е. отрицательное напряжение на базе при запертом транзисторе) для большинства типов кремниевых транзисторов, независимо от их мощности, составляет, увы, всего 5 В. На самом деле большинство транзисторов в импульсе выдерживает много больше, но лучше не экспериментировать. Допустимое напряжение коллектор‑база, как правило, примерно равно допустимому напряжению коллектор‑эмиттер, которое для обычных типов маломощных транзисторов составляет несколько десятков вольт (хотя есть и экстремальные типы, которые могут коммутировать и сотни вольт). Чаще всего в пределах одного типа разные буквы означают разброс в допустимых напряжениях (и/или в коэффициентах усиления β ): так, для КТ815А допустимое постоянное напряжение коллектор‑эмиттер составляет 40 В, а для КТ815Г – 100 В.

Предельно допустимая мощность на коллекторе (то же самое справедливо для диодов) обычно определяется типом корпуса – один и тот же транзистор, помещенный в разные корпуса, может обеспечить разную выделяемую мощность. Критерием тут служит температура самого кристалла, которую померить ох как непросто!

Для ориентировки можно указать, что транзисторы (и другие приборы), помещенные в распространенный корпус ТО‑220 (корпуса транзисторов показаны на рис. 6.11), могут без дополнительного радиатора рассеивать мощность до 1–2 Вт, а маломощные типа КТ3102 (корпус типа ТО‑92) – до 0,5 Вт. С радиатором возможности сильно возрастают – корпус типа ТО‑220 может рассеять до 60 Вт тепла без вреда для кристалла! Образцом тут могут служить микропроцессоры – какой‑нибудь Pentium 4 на частоте 3 ГГц потребляет порядка 70–80 Вт мощности, но с внешним радиатором, дополнительно охлаждаемым специальным вентилятором, работает без вреда для многих миллионов транзисторов, которые он содержит. (Расчетом радиатора мы будем заниматься в главе 9 .)

 

 

Рис. 6.11. Различные типы корпусов транзисторов

 

В любом случае следует выбирать минимально необходимый по мощности прибор – не только в целях экономии денег и места на печатной плате, но и потому, что чем меньше диод или транзистор, тем лучше у него остальные второстепенные характеристики: быстродействие, уровень собственных шумов, токи утечки и т. д. Но, как и в других случаях, запас обязательно следует иметь: если вы выберете для работы в цепи с напряжением 100 В и с токами до 1,5 А транзистор КТ815Г – это будет формально правильно, но я бы – для надежности – выбрал сюда что‑нибудь помощнее.

* * *

 

Подробности

Есть правило, касающееся любых компонентов, не только диодов или транзисторов: из всех предельных параметров максимально допустимого значения в процессе работы может достигать только один, остальные должны оставаться как можно ниже (для транзисторов даже приводятся специальные графики, называемые областью безопасной работы). Так, если вы выбрали упомянутый КТ815Г для работы в цепи с напряжениями до 100 В – пусть предельные токи через него заведомо никогда не смогут превысить 0,5 А. Это будет правильно! Представьте себе йога, который тренирован для пребывания голым на холоде в минус 30° в течение часа, спокойно ходит по раскаленным угольям, выдерживает давление на грудную клетку большегрузного автомобиля в 10 тонн и при этом ломает кирпичи одним ударом ладони. А теперь заставьте его проделать все это одновременно! Конечно, не исключено, что он выдержит, – ну, а как нет?

 

* * *

В подавляющем большинстве случаев номенклатура отечественных транзисторов способна удовлетворить самого взыскательного разработчика. Я это пишу не для того, чтобы «поддержать отечественного производителя», а потому, что так и есть – на практике достаточно располагать пятком‑десятком типов транзисторов, чтобы этого хватило почти на все случаи жизни. Среди маломощных транзисторов это КТЗ102 (КТЗ107 – здесь и далее в скобках указывается комплементарный[10] p‑n‑p ‑вариант). Лично мне очень нравятся архаичные маломощные транзисторы КТЗ15 (КТ361) – они имеют малые размеры и легко вписываются в современные платы с микросхемами (в том числе и с SMD‑компонентами), потому что у них шаг между выводами 2,5 мм, выводы плоские и расположёны также в одной плоскости. Хороши невзыскательные и дешевые транзисторы средней мощности в корпусе ТО‑126–КТ815 (КТ814) или КТ817 (КТ816), если требуется ток до 1–2 А. Если требуется высокий коэффициент усиления для средней мощности, стоит присмотреться к КТ972 (КТ973), построенным по «дарлингтоновской» схеме.

Среди мощных транзисторов можно отдать предпочтение КТ819 (КТ818) или, когда требуется «супербета», – КТ829 (n‑р‑n , а также очень мощной комплементарной паре КТ827/КТ825. Выпускаются почти все эти типы мощных транзисторов в основном в корпусах типа ТО‑220, но самая мощная пара КТ827 (КТ825) доступна в металлических корпусах ТО‑3, что лучше, чем дешевый ТО‑220, т. к. рассеиваемая мощность оказывается раза в 2–4 выше: типовая мощность транзистора в корпусе ТО‑220 равна 20–45 Вт, а в корпусе ТО‑3 – 80‑125 Вт. Но ТО‑3 намного неудобнее в технологическом плане, потому что крепление к теплоотводящему радиатору гораздо сложнее, и готовый радиатор подобрать под них нелегко. Впрочем, и мощности такие требуются нечасто.

Если трудно подобрать мощную «дарлингтоновскую» пару, то не забывайте, что дарлингтоновский транзистор всегда можно изготовить самостоятельно (см. рис. 6.5, а ). Причем в этом случае оба транзистора, составляющие «дарлингтоновскую» пару, должны монтироваться на один радиатор, но т. к. они соединены коллекторами, то это проблем не добавляет, и изолирующая прокладка не требуется.

* * *

 

Подробности

Для удобства мы употребляем западные наименования корпусов транзисторов, и далее то же самое будет относиться к микросхемам. Разумеется, названия корпусов для микросхем DIP, SOIC, SOT и др., как и транзисторных ТО‑92, Т‑220 и пр., применимы только к импортным компонентам, однако соответствующие отечественные корпуса микросхем имеют столь замысловатую систему обозначений, что для удобства и унификации мы будем в этой книге пользоваться исключительно западными названиями корпусов; еще и по той причине, что найти чертежи любого импортного корпуса намного легче, чем отечественного. Учтите, что имеется некоторая разница в шаге выводов (т. к. на западе приняты дюймовые стандарты, а у нас – метрические), хотя существенна она только для микросхем с большим числом выводов (см. главу 11 ).

 

* * *

При замене следует учитывать, что с корпусом мощного транзистора всегда электрически соединен его коллектор (если это корпус ТО‑220, то коллектор – всегда средний контакт), а вот разводка двух оставшихся выводов может различаться, и ее нужно обязательно проверять по справочнику.

Все сказанное относится к низкочастотным транзисторам, которые можно употреблять для источников питания, в качестве ключей управления индикацией или для усилителей звуковой частоты. Для многих других применений, где требуется быстрое срабатывание в ключевом режиме или высокие частоты усиления, такие транзисторы, естественно, не годятся, но точных рекомендаций на все случаи жизни дать нельзя. Учтите только, что транзисторы в одинаковых корпусах обычно имеют близкую мощность, и всегда можно попробовать заменить неизвестный импортный транзистор похожим по внешнему виду из того, что есть под рукой.

 

ГЛАВА 7


Дата добавления: 2019-02-12; просмотров: 302; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!