Тригонометрическая электроника



 

О частотах, периодах, мощности, переменных напряжениях и токах и немного о сигналах

 

 

И оба во весь опор помчались в сторону столицы

А.Дюма . Три мушкетера

 

 

Электрохимические (гальванические) элементы и аккумуляторы, с которыми мы экспериментировали в главе 1 , являются источниками постоянного напряжения.

Определение «постоянное» не означает, что такое напряжение вообще не меняется. Отнюдь – типичный график зависимости напряжения от времени (так называемые разрядные кривые) для гальванических элементов разных типов приведен на рис. 4.1.

 

 

Рис. 4.1. Зависимость напряжения от времени для гальванических элементов при токе нагрузки 100 мА

1 – литиевый (в пересчете на напряжение 1,5 В);

2 – щелочной типоразмера АА;

3 – традиционный марганец‑цинковый типоразмера АА.

(По данным И. Подушкина , «Радио», № 2, 2004)

 

Отметим, что большинство литиевых элементов имеет номинальное напряжение 3 В (для них значение напряжения на графике следует умножить на два), но в последние годы появились и элементы этого типа, аналогичные обычным щелочным. Как видите, зависит напряжение не только от времени – отдельные пики на графиках относятся к моментам, когда нагрузка отключалась, при этом напряжение элемента скачкообразно росло, а затем, при ее подключении, снова падало.

Подробнее об особенностях электрохимических элементов мы поговорим в главе 9 , а сейчас нам важно усвоить, что даже самое‑самое постоянное напряжение на деле может быть совсем и не постоянным. Даже для самых качественных источников питания, таких как электрохимические элементы, оно обязательно немножко «гуляет» – в зависимости от тока нагрузки и ее характера. Что же тогда называть переменным напряжением? Строгого определения, как ни странно, не существует – часто приводимое в учебниках выражение «напряжение, которое изменяется с течением времени», как видите, прекрасно подходит и к нашим батарейкам, хотя они являются типичными источниками напряжения постоянного. Поэтому мы договоримся переменными называть такие напряжения или токи, которые изменяются во времени, во‑первых, периодически, а во‑вторых, делают это «сами по себе», без влияния со стороны нагрузки и других внешних причин.

Слово «периодически» означает, что, начиная с какого‑то момента времени, форма графика такой величины повторяется снова и снова (хотя, возможно, и с некоторыми изменениями). Время повтора называется периодом переменной величины. Как вы хорошо знаете из школьного курса физики, наиболее простым и наглядным примером переменной периодической величины является величина, изменяющаяся во времени по синусоидальному закону.

На рис. 4.2 приведен график такой величины в зависимости от времени в условном масштабе. По оси ординат могут быть отложены как напряжение или ток, так и любой другой физический параметр.

Отрезок времени Т есть период изменения, а величина А носит название амплитуды и представляет собой максимальное значение нашей переменной в одном периоде (отметим, что для синусоидального закона минимальное значение – на части графика ниже оси абсцисс – строго равно максимальному). Величина, обратная периоду, обозначается буквой f и носит название частоты (см. формулу на рис. 4.2 вверху). Для нее придумана специальная единица измерения – это хорошо всём знакомый герц (Гц), названный так в честь немецкого физика XIX века Генриха Герца, доказавшего существование радиоволн.

Как следует из определения частоты, размерность герца есть единица, деленная на секунду: 1 Гц= 1/с. Это просто‑напросто означает, что колебание с частотой 1 Гц имеет период повторения ровно 1 секунду. Соответственно, 1 кГц (килогерц) означает, что в одной секунде укладывается тысяча периодов, 1 МГц (мегагерц) – миллион периодов и т. п.

 

 

Рис. 4.2. График простого синусоидального колебания

 

В дальнейшем под «величиной» мы чаще всего будем иметь в виду напряжение (для тока все выглядит аналогично). Математический закон, описывающий поведение синусоидального напряжения (U ) от времени (t ), выглядит так:

U = A ·sin (2πft ). (1)

Здесь π есть хорошо нам знакомое число «пи», т. е. отношение длины окружности к ее диаметру, равное 3,1415… Произведение 2πf носит специальное название круговая частота и обозначается буквой ω (омега). Физический смысл круговой частоты – величина угла (измеряемого в радианах), пробегаемого нашей синусоидальной кривой за секунду. Поскольку мы обещали не заниматься радиочастотной техникой, то углубляться в дальнейшие абстракции вроде представления переменных колебаний через комплексные числа, где понятие круговой частоты является ключевым, мы не будем – для практических нужд нам пока хватит и более наглядных определений обычной частоты через период.

А что будет, если график немного подвигать вдоль оси абсцисс? Как видно из рис. 4.3, это равносильно признанию того факта, что в нулевой момент времени наше колебание не равно нулю. На рис. 4.3 второе колебание начинается с максимального значения амплитуды, а не с нуля. При этом сдвигаются моменты времени, соответствующие целому и половине периода, а в уравнении (1) появляется еще одна величина, обозначаемая буквой φ (фи) и измеряемая в единицах угла – радианах:

U = A ·sin (2πft + φ ). (2)

 

 

Рис. 4.3. График синусоидальных колебаний, сдвинутых по фазе на четверть периода

 

Эта величина носит название фазы . Взятая для одного отдельного колебания, величина фазы выглядит не имеющей особого смысла, т. к. мы всегда можем сместить точку начала отсчета времени так, чтобы привести уравнение к виду (1), а, соответственно, график – к виду рис. 4.2, и при этом ничего не изменится. Однако все будет выглядеть иначе, если мы имеем два связанных между собой колебания – скажем, напряжения в разных точках одной схемы. В этом случае нам может быть важно, как соотносятся их величины в каждый момент времени, и тогда фаза одного переменного напряжения относительно другого (называемая в этом случае сдвигом или разностью фаз ) и будет характеризовать такое соотношение. Для колебаний, представленных на рис. 4.3, сдвиг фаз равен 90° (π /2 радиан). Именно для наблюдения таких колебаний совместно и предназначен многоканальный или многолучевой осциллограф – в обычном фаза колебания определяется только настройками синхронизации.

Интересно, что получится, если мы такие «сдвинутые» колебания суммируем? Не надо думать, что это есть лишь теоретическое упражнение – суммировать электрические колебания разного вида нам придется довольно часто. Математически это будет выглядеть, как сложение формул (1) и (2):

U = A1 ·sin (2πf1t ) + A2 ·sin (2πf2t + φ ). (3)

Обратите внимание, что в общем случае амплитуды и частоты колебаний различны (на рис. 4.3 они одинаковы!).

Чтобы представить себе наглядно результат, надо проделать следующее: скопировать графики на миллиметровку, разделить период колебаний на некоторое количество отрезков и для каждого отрезка сложить величины колебаний (естественно, с учетом знака), а затем построить график по полученным значениям. Еще удобнее проделать то же самое на компьютере – надо лишь написать программу, которая вычисляет значения по формуле (3) и строит соответствующие графики. Конечно, можно и не писать собственную программу, а использовать готовую, – скажем, Excel прекрасно умеет выполнять подобные операции.

Для иллюстрации продемонстрируем (рис. 4.4), что получится, если сложить два колебания, которые были представлены на рис. 4.3. Я не буду приводить картинки для иных случаев, т. к. интересных комбинаций может быть довольно много, но очень рекомендую потратить время на эти упражнения, потому что результаты могут быть весьма неожиданными и вовсе неочевидными. Скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), результирующая сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого в каждой точке равна разности амплитуд исходных. Запомним этот факт – он нам пригодится, когда мы будем рассматривать усилители звуковой частоты с обратной связью (см. главу 8 ).

 

 

Рис. 4.4. Суммирование колебаний, сдвинутых по фазе на четверть периода

1 – исходные колебания, 2 – их сумма

 

Можно ли проверить на практике это положение? Для этого нам придется немного забежать вперед: потребуется сетевой трансформатор с двумя вторичными обмотками. Обмотки эти нужно соединить последовательно так, чтобы конец одной обмотки соединялся с концом другой (как находить начала и концы обмоток трансформатора, будет рассказано в главе 9 ). В обмотках трансформатора напряжения имеют одинаковую частоту и фазу, зависящую от способа их соединения – если соединить так, как указано (конец с концом), то сдвиг фаз составит ровно 180°, т. е. мы воспроизведем условия нашего эксперимента. Теперь осталось только включить трансформатор в сеть и присоединить к свободным выводам обмоток вольтметр (естественно, настроенный для измерения переменного напряжения). Мы получим именно то, что предсказано расчетом: если обмотки одинаковые (т. е. амплитуды напряжений в них одни и те же), то вольтметр не покажет ничего – несмотря на то, что сами напряжения в обмотках могут быть сколь угодно велики! Если же обмотки имеют разное количество витков, то результат измерения будет равен разности напряжений. Комбинируя различные обмотки таким образом, мы можем заставить трансформатор выдавать напряжения, которые в нем вовсе не были предусмотрены!

А вот вопрос на засыпку – что показывал вольтметр в предыдущем эксперименте? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от отрицательного до точно такого же положительного значения, т. е. в среднем напряжение строго равно нулю – и тем не менее, вольтметр нам показывал совершенно определенное значение. Для ответа на этот вопрос отвлечемся от колебаний и поговорим о еще одной важнейшей величине, которая характеризует электрический ток, – о мощности.

 

 

Мощность

Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени. Единица мощности называется ватт (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается – смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля – Ленца:

N (ватт) = U (вольт)·I (ампер)

Эту формулу несложно вывести из определений тока и напряжения (см. главу 1 ).

Действительно, размерность напряжения есть джоуль/кулон, а размерность тока – кулон/секунду. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду – что, согласно приведенному ранее определению, и есть мощность.

Если подставить в формулу для электрической мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля – Ленца:

N = I 2R и N = U 2/R

Обратите внимание на одно важное следствие из этих формул – мощность в цепи пропорциональна квадрату тока или напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо.

А вот от сопротивления мощность зависит линейно – если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке также возрастет только вдвое. Это именно так, хотя факт, что согласно закону Ома ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо. Но если вы внимательно проанализируете формулировку закона Джоуля – Ленца, то поймете, где здесь зарыта собака – ведь в произведении U ·I увеличивается только ток, а напряжение остается тем же самым.

В электрических цепях энергия выступает чаще всего в роли тепловой энергии, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы, – куда расходуется энергия источника питания, гоняющего по цепи ток? Ответ – на нагревание сопротивлений нагрузки, включенных в сеть. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло – к. п. д. лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает единиц процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из всего этого следует, например, что ваш компьютер последней модели, который потребляет сотни ватт энергии, также всю эту энергию переводит в тепло – за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска (впрочем, энергия вращения тоже в конце концов переходит в тепло). Такова цена информации!

Если мощность, выделяемая на нагрузке, превысит некоторую допустимую величину, то нагрузка просто сгорит. Поэтому различные типы нагрузок характеризуют предельно допустимой мощностью , которую они могут рассеять без необратимых последствий. Подробнее об этом для разных видов нагрузок мы поговорим в дальнейшем, а сейчас зададимся вопросом – что означает мощность в цепях переменного тока?

 

 

Что показывал вольтметр?

Для того чтобы понять смысл этого вопроса, давайте внимательно рассмотрим график синусоидального напряжения на рис. 4.2. В каждый момент времени величина напряжения в нем разная – соответственно, будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные T /2 и Т (т. е. кратные половине периода нашего колебания), напряжение на нагрузке вообще будет равно нулю (ток через резистор не течет), а в промежутках между ними – меняется вплоть до некоей максимальной величины, равной амплитудному значению А. Точно так же будет меняться ток через нагрузку, а следовательно, и выделяемая мощность (которая от направления тока не зависит – физики скажут, что мощность есть величина скалярная, а не векторная). Но процесс выделения тепла крайне инерционен – даже такой маленький предмет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощность за большой промежуток времени. Чему она будет равна?

Чтобы точно ответить на этот вопрос, нужно брать интегралы – средняя мощность за период есть интеграл по времени от квадрата функции напряжения. Здесь мы приведем только результат – величина средней мощности в цепи переменного тока определяется так называемым действующим значением напряжения (Ud ), которое для синусоидального колебания связано с амплитудным его значением (Ua ) следующей формулой: Ua = Ud ·√2 (вывод этой формулы приведен в приложении 3 ). Точно такая же формула справедлива и для тока. Когда говорят «переменное напряжение 220 В», то всегда имеется в виду именно действующее значение. При этом амплитудное значение равно примерно 310 В, что легко подсчитать, если умножить 220 на корень из двух. Это значение нужно всегда иметь в виду при выборе компонентов для работы в сетях переменного тока – если взять диод, рассчитанный на 250 В, то он легко может выйти из строя при работе в обычной сети, в которой мгновенное значение превышает 300 В, хотя действующее значение и равно 220 В. А вот для компонентов, использующих эффект нагревания (лампочек, резисторов и т. п.), при расчете допустимой мощности нужно иметь в виду именно действующее значение.

Называть действующее значение «средним» неверно, правильно называть его среднеквадратическим (по способу вычисления – через квадрат функции от времени). Но существует и понятия среднего значения, причем не одно, а даже два. Просто среднее (строго по смыслу названия) – сумма всех мгновенных значений за период. И так как нижняя часть синусоиды (под осью абсцисс) строго симметрична относительно верхней, то можно даже не брать интегралов, чтобы сообразить, что среднее значение синусоидального напряжения, показанного на рис. 4.2, в точности равно нулю – положительная часть компенсирует отрицательную. Но такая величина малоинформативна, поэтому чаще используют средневыпрямленное (среднеамплитудное) значение, при котором знаки не учитываются (т. е. в интеграл подставляется абсолютная величина напряжения). Эта величина (Uс ) связана с амплитудным значением (Ua ) по формуле Uа = π·Uс /2 т. е. Ua  равно примерно 1,57·Uc .

Для постоянного напряжения и тока действующее, среднее и среднеамплитудное значения совпадают и равны просто величине напряжения (тока). Однако на практике часто встречаются переменные колебания, форма которых отличается и от постоянной величины, и от строго синусоидальной. Осциллограммы некоторых из них показаны на рис. 4.5. Для таких сигналов приведенные ранее соотношения для действующего и среднего значений недействительны! Самый простой случай изображен на рис. 4.5, в – колебание представляет собой синусоиду, но сдвинутую вверх на величину амплитуды. Такой сигнал можно представить как сумму постоянного напряжения величиной А (постоянная составляющая) и переменного синусоидального (переменная составляющая). Соответственно, среднее значение его будет равно А , а действующее A + A/ √2. Для прямоугольного колебания (рис. 4.5, б ) с равными по длительности положительными и отрицательными полуволнами (симметричного меандра[7]) соотношения очень просты: действующее значение равно среднеамплитудному, как и для постоянного тока, а вот среднее значение равно, как и для синуса, нулю.

 

 

Рис. 4.5 . Графики некоторых колебаний несинусоидальной формы

 

В часто встречающемся на практике случае, когда минимум прямоугольного напряжения совпадает с нулем, т. е. напряжение колеблется от нуля до напряжения питания (на рис. 4.5 не показано), такой меандр можно рассматривать аналогично случаю рис. 4.5, в, как сумму постоянного напряжения и прямоугольного. Для самого верхнего случая (рис. 4.5, а ), который представляет собой синусоидальное напряжение, пропущенное через двухполупериодный выпрямитель (см. главу 9 ), действующее и среднеамплитудное значения будут равны соответствующим значениям для синусоиды, а вот среднее будет равно не нулю, а совпадать со среднеамплитудным. Для самого нижнего случая (рис. 4.5, г ) указать все эти величины вообще непросто, т. к. они зависят от формы сигнала.

Но, даже выучив все это, вы все равно не сможете измерять величины напряжений и токов несинусоидальной формы с помощью мультиметра! Не забывайте об этом, как и о том, что для каждого мультиметра есть предельные значения частоты колебаний – если вы включите мультиметр в цепь с иными параметрами, он может показать все, что угодно – «погоду на Марсе», по распространенному выражению.

Измерительные приборы для переменного напряжения проградуированы в значениях действующего напряжения, но измеряют они, как правило, среднеамплитудное (по крайней мере, большинство – на подробностях мы не будем сейчас задерживаться), и сообразить, как именно пересчитать показания, далеко не всегда просто. А для сложных сигналов, как на рис. 4.5, г, это выливается в сущую головоломку на уровне задач для студентов мехмата. Выручить может осциллограф и знание соотношений, приведенных ранее для сигналов самой распространенной формы, ну а для более сложных вычислять действующие и средние значения нам и не потребуется.

* * *

 

Заметки на полях

Единственный прибор, который правильно покажет значение действующего напряжения любой формы, – это аналоговый вольтметр электромагнитной системы (их легко узнать по неравномерной шкале, деления на которой к концу отстоят все дальше и дальше друг от друга). Для того чтобы несинусоидальное напряжение измерить цифровым прибором, между измеряемой величиной и вольтметром можно вставить интегрирующий фильтр (фильтр нижних частот), описанный в главе 5 .

 

* * *

Для прямоугольных напряжений, представляющих собой меандр, подобный рис. 4.5, б , существует еще одна важная характеристика. Никто ведь не запрещает представить себе прямоугольное напряжение, в котором впадины короче или длиннее всплесков. В электронике меандр без дополнительных пояснений означает симметричную форму прямоугольного напряжения, при которой впадины строго равны всплескам по длительности, но, вообще говоря, это необязательно. На рис. 4.6 приведены два примера таких напряжений в сравнении с симметричным меандром. Характеристика соотношений между длительностями частей периода называется скважностью и определяется, как отношение длительности всего периода к длительности положительной части (именно так, а не наоборот, т. е. величина скважности всегда больше 1). Для меандра скважность равна 2, для узких коротких импульсов она будет больше 2, для широких – меньше.

 

 

Рис. 4.6. Примеры напряжений в сравнении с симметричным меандром

 

 

Сигналы

Несколько слов о сигналах. Электрический сигнал, по смыслу его названия – какое‑то состояние электрической цепи, которое несет информацию. Различают источники сигналов и их приемники. Так как минимальное количество информации (1 бит) подразумевает по крайней мере два различимых состояния (подробнее об этом будет идти речь в главе 14 ), то и сигнал должен иметь как минимум два состояния. Еще со времен телеграфа Морзе самый простой сигнал: наличие или отсутствие постоянного напряжения или тока в цепи – именно такими сигналами обмениваются логические микросхемы. Однако на большое расстояние такой простейший сигнал не передашь – слишком сложно защититься от помех, из‑за них приемник легко может обнаружить наличие сигнала там, где на самом деле всего лишь помеха. Поэтому придумывают разные сложные методы, некоторые из них, например, предусматривают передачу переменного напряжения разной частоты или фазы (именно так устроены модемы). Теория передачи сигналов тесно связана с теорией колебаний – одно только радио чего стоит!

Подробнее о разных сигналах мы будем говорить в соответствующих главах, а сейчас нам важно только одно – когда мы говорим о сигналах, то подразумеваем, что соответствующее напряжение или ток не предназначено для совершения иной работы, кроме как заставить сработать приемник. Потому соответствующие передаваемые мощности значительно меньше, чем при передаче электроэнергии для совершения полезной работы. Действительно – никто еще не придумал, как питать, скажем, спутники на орбите по радиолучу, а вот информацию передают вполне успешно даже за пределы Солнечной системы. В этом и заключается разница между силовыми и сигнальными цепями (если помните, то в главе 3 мы даже специально отмечали, что проводники питания следует делать как можно толще, а для сигнальных цепей это необязательно). И понимание этого тонкого различия очень пригодится нам в дальнейшем изложении.

 

 


Дата добавления: 2019-02-12; просмотров: 280; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!