Предисловие к первому изданию 24 страница



 

 Понимая под структурой адрона его склонность подвергаться различным реакциям, теория S-матрицы придает понятию структуры динамический характер. Такая трактовка структуры прекрасно соотносится с экспериментальными данными. Участвуя в высокоэнергетических столкновениях, адроны всегда распадаются на другие адроны, и поэтому мы можем утверждать, что они потенциально "состоят" из этих сочетаний адронов. Каждая из образующихся при этом частиц будет подвергаться дальнейшим преобразованиям, соединяя, таким образом, наш исходный адрон с целой сетью событий, которую можно запечатлеть внутри пузырьковой камеры при помощи фотоаппарата. Примеры таких сетей реагирования изображены на рисунках в главе 15 и на рис. 55.

 Хотя проявление той или иной сети во время конкретного эксперимента определяется одной лишь случайностью, каждая сеть обладает вполне предсказуемой структурой. Причина — в действии уже упоминавшихся законов сохранения, согласно которым могут происходить только такие реакции, в которых сохраняется неизменным определенный набор квантовых чисел. Прежде всего, константой должно быть суммарное количество энергии. Это означает, что в ходе реакции могут возникать только те частицы, для образования массы которых окажется достаточным имеющийся запас энергии. Далее, возникшие частицы должны в совокупности обладать тем же квантовыми числами, что и первоначальные частицы. Возьмем, к примеру, взаимодействие протона и p. Суммарный электрический заряд этих частиц равен нулю. В результате их столкновения могут образоваться нейтрон и p0 но не нейтрон и p+, так как суммарный электрический заряд второго сочетания равен +1. Следовательно, адронные реакции представляют собой поток энергии, в котором возникают и исчезают частицы, но эта энергия может "течь" только по некоторым определенным "каналам", характеристиками которого и являются квантовые числа, сохраняющиеся во время сильных взаимодействий в качестве констант.

 

 В теории S-матрицы понятие канала реакции имеет более фундаментальное значение, чем понятие частицы. Оно определяется как набор квантовых чисел, присущий различным адронным сочетаниям, а нередко — и отдельным адронам. Какое именно сочетание пройдет через тот или иной канал, определяется вероятностью и зависит, в первую очередь, от имеющегося количества энергии. График на рис. 56 соответствует взаимодействию между протоном и p, на промежуточной стадии которого образуется нейтрон. Таким образом, канал реакции состоит сначала из двух адронов, потом — из одного, а в конце концов — снова из первоначальной пары адронов. При наличии большого количества энергии тот же самый канал мог бы состоять из пар L — К, S — К+ т. д.

 Еще более уместно рассматривать в терминах каналов реакций резонансы — эти крайне недолговечные состояния адронов, которые характерны для всех сильных взаимодействий. Они представляют собой настолько эфемерные явления, что физики сначала даже не хотели рассматривать их в качестве частиц, да и до сих пор одна из важнейших задач, стоящих перед современной экспериментальной физикой высоких энергий, заключается в том, чтобы более точно определить свойства резонансов. Резонансы образуются во время столкновений между адронами и почти сразу же распадаются. В пузырьковой камере они никак не обнаруживают своего присутствия, и обнаружить их можно только благодаря характерному изменению вероятностных характеристик реакций. Вероятность прохождения реакции при столкновении двух адронов зависит от количества энергии, принимающей участие в столкновении. При изменении количества энергии вероятность тоже изменяется; причем при увеличении запаса энергии она может не только возрасти, но и снизиться, что определяется другими особенностями реакции. Однако при некоторых значениях запаса энергии вероятность реакции возрастает довольно резко; при таких значениях реакция будет происходить гораздо чаще, чем при всех остальных. Резкий рост вероятности связан с образованием недолговечного промежуточного адронного состояния с массой равной тому количеству энергии, при котором отмечается резкое увеличение вероятности.

 

 Причина, по которой эти недолговечные адронные состояния получили название резонансов, имеет отношение к аналогии из механики, связанной с хорошо известным явлением резонанса при колебаниях. Возьмем, к примеру, звук, то есть колебания воздуха. Мы знаем, что воздух, находящийся внутри какого-либо полого предмета, обладает способностью слабо реагировать на приходящие извне звуковые волны, но если волны достигнут определенной частоты, называющейся частотой резонанса, воздух внутри полости тоже начнет совершать колебания, или "резонировать". Канал адронной реакции тоже можно уподобить такому резонирующему предмету, поскольку энергия столкновения адронов связана с частотой соответствующей вероятности волны. Когда эта энергия, или, что-то же самое, частота, достигает определенного значения, канал начинает "резонировать", колебания вероятностной волны внезапно усиливаются, что вызывает резкий скачок вероятности реакции. Большинство каналов реакции имеют несколько резонансных значений энергии, каждое из которых соответствует недолговечному адронному состоянию, реализующемуся при приближении энергии столкновения к резонансному значению. В контексте теории S-матрицы вопрос о том, являются ли резонансы "частицами", теряет свой смысл. Все частицы воспринимаются как промежуточные стадии в сети реакций, и тот факт, что продолжительность существования резонансов гораздо меньше, чем продолжительность существования других адронов, не имеет решающего значения. "Резонанс" — и в самом деле очень удачное название. Оно относится одновременно и к событиям в канале реакции, и к адрону, образующемуся в процессе этих событий, обнаруживая, таким образом, неразрывную связь между частицами и реакциями. Резонанс — это частица, но не объект. Гораздо более уместно назвать его событием, процессом или чем-нибудь в этом роде.

 

 Это описание адронов в физике вызывает в памяти уже цитировавшееся выше высказывание Д. Т. Судзуки: "Буддисты воспринимают объект как событие, а не как вещь или материальную субстанцию". То, что открылось буддистам благодаря мистическому интуитивному прозрению, было документально подтверждено экспериментами и математическими теориями современной науки.

 

 Для того, чтобы описать все адроны как промежуточные состояния в сети реакций, мы должны иметь возможность охарактеризовать силы взаимодействия между ними. Последние принадлежат к числу сил, действующих при сильных взаимодействиях, и отражают, или "рассеивают" адроны, участвующие в столкновениях, уничтожая их или преобразуя в другие структуры, а также объединяя их в группы, служащие для последующего образования промежуточных связанных состояний. В теории S-матрицы, как и в теории поля, силы взаимодействий ассоциируются с частицами, однако понятие виртуальной частицы не используется. Вместо этого соотношения между силами и частицами основываются на особом свойстве S-матрицы, известном под названием "кроссинг". Рассмотрим его на примере следующего графика, изображающего взаимодействие между протоном и p (рис. 57).

 Если мы перевернем этот график на 90 градусов, придерживаясь принятого ранее допущения (глава 12), согласно которому стрелки, направленные вниз, означают античастицы, мы увидим на графике взаимодействие антипротона (-р) и протона (р), в результате которого образуется пара пионов, причем p+ представляет собой античастицу для писходного взаимодействия (рис. 58).

 

 Свойство "кроссинга", то есть пересечения, перекрестка, характерное для S-матрицы, в данном случае заключается в том, что оба эти процесса могут быть изображены при помощи одного и того же элемента S-матрицы (рис. 59), то есть два наших графика соответствуют только различным аспектам, или "каналам", одной и той же реакции. (Мы можем продолжать вращать график, получая новые и новые варианты реакций, описываемые, тем не менее, при помощи все того же графика. Каждый элемент S-матрицы изображает шесть различных процессов, однако для нашего рассказа о силах взаимодействия достаточно упомянуть только о двух из них, которые названы выше). Для специалистов в области физики частиц переходы от одного канала к другому являются обычными, и вместо того, чтобы переворачивать график, они просто читают его снизу вверх или слева направо, говоря при этом о "прямом канале" или "кросс-канале". Таким образом, реакция в нашем примере будет прочитана как р+p®р+p в прямом канале, и как -р+р®p+p+ — в кросс-канале.

 

 Связь между силами и частицами осуществляется при помощи промежуточных состояний двух каналов. В нашем случае в прямом канале протон и pмогут образовать промежуточный нейтрон, а кросс-канал может состоять из промежуточного нейтрального пиона (p0). Этот пион, промежуточное состояние кросс-канала, будет рассматриваться как воплощение сил, действие которых в прямом канале выражается в связывании протона и пив единое целое для образования нейтрона. Таким образом, для установления связи между силами и частицами нам необходимы оба канала: то, что в одном из них является силой, в его кросс-канале будет уже промежуточной частицей (рис. 60).

 Хотя переключение с одного канала на другой не представляет больших трудностей математического порядка, получить четкое интуитивное ощущение того, что при этом происходит, очень сложно, если вообще возможно. Дело в том, что "кроссинг" представляет собой типично релятивистское явление, рассматривающееся в контексте четырехмерного формализма теории относительности и с трудом поддающееся визуализации. С похожим положением дел мы сталкиваемся в теории поля, где силы взаимодействия рассматриваются в виде обменов виртуальными частицами. И в самом деле, график, на котором изображен промежуточный пион в кросс — канале, чем-то напоминает графики Фейнмана, использующиеся для описания обменов виртуальными частицами (не следует, однако, забывать о том, что графики S-матрицы не являются пространственно-временными и имеют характер приблизительных, символических изображений реакции частиц, а также о том, что переключение от одного канала к другому происходит в абстрактном математическом пространстве). В этой связи можно условно говорить о том, что протон и pвзаимодействуют посредством обмена p0. Такие выражения нередко встречаются в речи физиков, однако они не вполне точны. Более адекватное толкование происходящего требует обязательного использования абстрактных понятий прямого и кросс-каналов, которые практически невозможно представить себе зрительно.

 

 Несмотря на различные математические подходы, общее понимание сил взаимодействия в теории S-матрицы мало отличается от теории поля. Согласно обеим теориям, силы проявляются в форме частиц, масса которых определяет радиус действия силы. Обе теории видят в силах имманентные свойства взаимодействующих частиц: в теории поля силы являются отражением структуры виртуальных облаков частиц, а в теории S-матрицы они порождаются связанными состояниями взаимодействующих частиц. Обоснованная нами параллель с восточным толкованием понятия силы, характерна, таким образом, для обеих этих теорий (см. главу 14). Из такого подхода к рассмотрению сил взаимодействия вытекает важный вывод о том, что все известные частицы должны иметь некую внутреннюю структуру, поскольку только в последнем случае они смогут вступать во взаимодействие с наблюдателем и быть замеченным им. По словам Джеффри Чу, одного из создателей теории S-матрицы.

 

"Воистину, элементарная частица — полностью лишенная внутренней структуры — не была бы подвержена действию каких-либо сил, которые могли бы помочь нам обнаружить ее существование. Уже из того самого факта, что нам известно о существовании частицы, следует сделать вывод о том, что эта частица обладает внутренней структурой!" [15,99].

 

 Особое преимущество математического языка теории S-матрицы заключается в том, что при его помощи можно описать "обмен" целой адронной семьей. Как говорилось в предыдущей главе, все адроны можно разделить на последовательности, для членов каждой из которых характерна полная идентичность всех свойств, за исключением массы и спина. Математическая формулировка, впервые предложенная Туллио Редже, позволяет рассматривать каждую из этих последовательностей в качестве множества возбужденных состояний одного и того же адрона. За последние годы ученым удалось объединить формулировку Редже с теорией S-матрицы, в которой ее стали очень успешно применять для описания адронных реакций. Введение в научный обиход этой формулировки является одним из наиболее важных усовершенствований теории S-матрицы, и может расцениваться как первый шаг к динамическому объяснению паттернов частиц.

 

 Таким образом, теория S-матрицы позволяет физикам описывать строения адронов, силы взаимодействия между ними и некоторые из паттернов, которые они образуют, принципиально динамическим образом, так, что каждый адрон понимается как неотделимая часть неразрывной сети реакций. Основная задача, стоящая перед теорией S-матрицы, заключается в том, чтобы применить это динамическое описание для объяснения симметрий, порождающих адронные паттерны и законы сохранения, которым была посвящена предыдущая глава. В новой формулировке этой теории адронные симметрии должны отразиться на математической структуре S-матрицы таким образом, чтобы она содержала только те элементы, которые соответствуют реакциям, допустимым с точки зрения законов сохранения. Тогда эти законы утратили бы свой теперешний статус чисто эмпирических закономерностей и стали бы логическим следствием динамической природы адронов.

 

 В настоящее время физики пытаются решить эту задачу при помощи постулирования нескольких общих принципов, которые ограничивают математические вероятности построения элементов S-матрицы, придавая последней, таким образом, более определенную структуру. До сих пор было постулировано три таких принципа. Первый из них является следствием из теории относительности и наших макроскопических представлений о времени и пространстве. Он гласит, что вероятности реакций (а следовательно, и элементы S-матрицы) не зависят от расположения экспериментального оборудования в пространстве и времени, его пространственной ориентации и состояния движения наблюдателя. Как говорилось в предыдущей главе, из факта независимости реакций частиц от изменений ориентации и местонахождения в пространстве и времени следует вывод о сохранении суммарного количества вращения, импульса и энергии, принимающих участие в реакции. Эти "симметрии" имеют колоссальное значение для нашей научной работы. Если бы результаты эксперимента менялись в зависимости от времени и места его проведения, наука в ее современном понимании попросту прекратила бы свое существование. Наконец, последнее утверждение относительно того, что результаты эксперимента не зависят от состояния движения наблюдателя, представляет собой сформулированный принцип относительности, лежащий в основе теории с аналогичным названием (см. главу 12).

 

 Второй основополагающий принцип вытекает из квантовой теории. Согласно нему, исход той или иной реакции можно предсказать только в терминах вероятностей, то есть сумма вероятностей всех возможных исходов — включая тот случай, когда взаимодействия между частицами не происходят вообще — должна равняться единице. Другими словами, можно считать доказанным, что частицы либо взаимодействуют друг с другом, либо нет. Это казалось бы, тривиальное положение представляет собой очень важный принцип, получивший название "принципа унитарности", который тоже значительно ограничивает возможности построения элементов S-матрицы.

 

 Наконец, третий и последний принцип имеет отношение к нашим представлениям о причине и следствии и называется принципом причинности. Согласно нему, энергия и импульсы могут совершать пространственные перемещения только при помощи частиц, и при подобных перемещениях частица может возникнуть во время одной реакции и исчезнуть во время другой при том условии, что последующая реакция происходит позже, чем предыдущая. Из математической формулировки принципа причинности следует, что S-матрица обнаруживает непосредственную зависимость от энергий и импульсов частиц, принимающих участие в реакции, за исключением величин, при которых становится возможным возникновение новых частиц. При этих значениях математическая структура S-матрицы резко изменяется: она начинает характеризоваться явлением, которое математики называют особенностью. Каждый канал реакции содержит несколько таких особенностей, то есть несколько значений энергии и импульса, при которых могут образоваться новые частицы. Примером особенностей являются упоминавшиеся выше "резонансные энергии". Принцип причинности предполагает, что S-матрица имеет особенности, но не указывает их точного расположения. Значения энергии и импульса, при которых могут возникать новые частицы, варьируются в зависимости от масс и других характеристик образующихся частиц, а также в зависимости от канала реакции. Таким образом, локализация особенностей отражает свойства этих частиц, а поскольку во время реакций частиц могут возникать любые адроны, особенности S-матрицы заключают в себе информацию обо всех закономерностях классификации адронов и их симметриях. Поэтому главная цель теории S-матрицы заключается в том, чтобы свести структуру особенностей S-матрицы к общим принципам. До сих пор модели, которая могла бы удовлетворить требованиям всех трех принципов, создать не удалось; вообще, вполне возможно, что этих трех принципов вполне достаточно для исчерпывающего описания всех свойств S-матрицы, а значит, и всех свойств адронов. (Это предположение, получившее свою известность под названием гипотезы бутстрапа, будет более подробно рассматриваться в последней главе книги). Если дело обстоит именно так, то философские следствия такой теории будут иметь просто колоссальное значение. Каждый из трех принципов связан с нашими методами организации наблюдений и измерений окружающего мира, то есть с нашим научным подходом. Если структура адронов определяется только этими принципами и ничем иным, это значит, что основные структуры физического мира, в конечном счете, определяются только нашим взглядом на мир. Любое существенное изменение в наших методах наблюдения приведет к изменению основополагающих принципов, что повлечет за собой изменение структуры S-матрицы, а значит, и структуры адронов.

 

 Такая теория субатомных частиц отражает принципиальную невозможность отделения наблюдателя от наблюдаемого им мира, о чем мы уже упоминали в связи с квантовой теорией. Из нее следует, что все структуры и явления, наблюдаемые нами в окружающем мире, представляют собой не что иное, как порождения нашего измеряющего и классифицирующего сознания. К аналогичному утверждению сводится одно из важнейших положений восточной философии. Восточные мистики не устают повторять, что воспринимаемые нами вещи и события суть порождения сознания, берущие начало в одном из его состояний и исчезающие при преодолении этого состояния. Индуизм утверждает, что все формы и структуры вокруг нас порождаются сознанием, скованным чарами майи, и рассматривает нашу склонность придавать им большое значение в качестве проявления одной из основных иллюзий, присущих человеку. Буддисты называют эту иллюзию "авидья", то есть "невежество", и видят в ней состояние "загрязнения" сознания. Как говорит Ашвагхоша,


Дата добавления: 2019-02-12; просмотров: 128; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!