Предисловие к первому изданию 16 страница



 

 Для того, чтобы понять значение искривленного пространства-времени, воспользуемся в качестве аналогии двухмерными поверхностями. Представим себе, скажем, поверхность шара. Здесь основным моментом, который позволяет нам применить эту аналогию по отношению к пространству-времени, является тот факт, что кривизна есть необходимое свойство самой поверхности и может быть измерена без перехода в трехмерное пространство. Двухмерное насекомое, находящееся в плоскости поверхности шара и не знающее о существовании трехмерного пространства, способно, тем не менее, обнаружить, что поверхность, на которой оно находится, искривлена, при том условии, что ему доступны простейшие геометрические измерения.

 

 Для того, чтобы узнать, к каким результатам это может привести, сравним геометрию нашего жучка на шаре, с геометрией точно такого же насекомого, живущего на плоской поверхности (рис. 17). Представим, что два жучка начинают свои геометрические изыскания, проводя прямую линию, которая определена как кратчайшее расстояние между двумя точками. Результаты получатся различные, мы видим, что жучок на плоскости провел очень красивую ровную линию, но что же получилось у его приятеля? Линия, которую он провел на поверхности шара, для него действительно соответствует кратчайшему расстоянию между двумя точками, поскольку любая другая линия оказалась бы длиннее; но для нас это дуга большой окружности, если быть точными. Теперь предположим, что жучки приступили к изучению треугольников. Один из них обнаружит, что сумма всех углов треугольника на плоскости соответствует ста восьмидесяти градусам, а другой найдет, что на поверхности шара сумма трех углов всегда превышает эту величину (рис. 18). В небольших треугольниках это превышение незначительно, но оно увеличивается с ростом самого треугольника, так что наш жучок может построить на поверхности шара даже треугольник с тремя прямыми углами. Теперь пускай жучки построят на своих поверхностях окружности и измерят их длину. Один из них придет к выводу о том, что на плоскости любая окружность равна удвоенному произведению радиуса на число "пи", вне зависимости от величины круга. Другой, напротив, заметит, что на поверхности шара длина любой окружности меньше, чем это произведение. Как видно на рисунке 19, наша трехмерная точка зрения позволяет нам увидеть, что то, что жучок называет радиусом своего круга, на самом деле является дугой, которая всегда длинней настоящего радиуса.

 

 По мере дальнейшего продвижения этих двух насекомых-геометров, один из них будет обнаруживать, что на плоскости действуют законы геометрии Евклида, но его партнер откроет совсем другие законы. Для небольших геометрических фигур разница будет не очень значительной, однако по мере их увеличения будет увеличиваться и разница. На примере двух жучков мы видим, что при помощи геометрических измерений на плоскости и их последующего сопоставления с результатами евклидовой геометрии всегда можно определить, искривлена ли данная поверхность. Если обнаруживается расхождение, поверхность искривлена, и чем больше расхождение, тем значительней это искривление (при том условии, что размер фигур на плоскости и сферической поверхности одинаков).

 

 Точно таким же образом мы можем определить, что в некотором искривленном трехмерном пространстве перестают действовать законы евклидовой геометрии. В таком пространстве геометрические законы будут другого, "неевклидова" характера. Такая "неевклидова" геометрия была разработана в девятнадцатом веке математиком Георгом Риманном в качестве абстрактного математического построения, и оно оставалось таковым до тех пор, пока Эйнштейн не сделал свое революционное заявление о том, что трехмерное пространство, в котором мы живем, искривлено. Согласно теории Эйнштейна, искривление пространства вызвано гравитационными полями тяжелых тел. Рядом с любым тяжелым объектом пространство искривляется, и степень этого искривления, то есть несоответствия данного участка пространства законам евклидовой геометрии, зависит от величины массы этого объекта.

 

 Уравнения, описывающие соотношения между искривлением пространства и распределением материи в этом пространстве, называются уравнениями поля Эйнштейна. При их помощи можно не только определить степень искривленности пространства вблизи от звезд и планет, но и выяснить, существует ли всеобщее, крупномасштабное искривление пространства. Одним словом, уравнение Эйнштейна позволяет определить структуру Вселенной как целого. К сожалению, они могут быть решены не единственным способом. Возможно несколько вариантов решения таких уравнений, каждый из которых представляет модель строения Вселенной, рассматриваемую в космологии (некоторые из них будут охарактеризованы в следующей главе). Главная задача современной космологии — определить, которая из моделей наилучшим образом описывает строение нашей Вселенной. Поскольку в теории относительности время не может быть отделено от пространства, искривление, вызванное гравитацией, имеет место не только в трехмерном пространстве, но и в четырехмерном пространстве-времени, поскольку именно об этом говорит нам общая теория относительности. В искривленном пространстве-времени искажения затрагивают не только пространственные соотношения, описываемые геометрией, но и продолжительность промежутков времени. Время здесь течет с другой скоростью, отличающейся от течения времени в "плоском пространстве-времени", и скорость изменяется вместе со степенью искривления пространства в зависимости от наличия вблизи тяжелых тел. Однако важно не выпускать из виду то обстоятельство, что изменения в скорости течения времени может заметить только такой наблюдатель, который удален от часов, фиксирующих эти изменения. Если же наблюдатель отправится в некоторое место, где время течет медленнее, все его часы тоже замедлили бы ход, и он потерял бы всякую надежду измерить эффект.

 

 Здесь, на Земле, гравитация воздействует на пространство и время крайне незначительно, но в астрофизике, которая имеет дело с телами исключительно большой массы — такими, как планеты, звезды и галактики, — искривление пространства-времени является чрезвычайно важным фактором. До сих пор все наблюдения в данной области подтверждали правильность выводов Эйнштейна и вселяли в нас уверенность в том, что пространство-время в самом деле искривлено. Наиболее своеобразным проявлением искривления представляются процессы, происходящие во время гравитационной гибели звезд. Согласно современной астрофизике, каждая звезда достигнет определенного этапа своего развития, на котором она прекращает свое существование вследствие взаимного гравитационного притяжения частиц, составляющих ее. Поскольку, по мере сокращения расстояния между частицами, это притяжение резко возрастает, процесс уничтожения получает ускорение, и если звезда обладает достаточно большой массой, что означает, что ее масса не менее, чем в два раза больше массы Солнца, ни один известный нам процесс не может предотвратить гибель звезды, которая, к тому же, будет происходить совершенно непредсказуемым образом.

 

 По мере того, как звезда уменьшается в размерах, увеличивая свою плотность, гравитация на ее поверхности проявляется все сильнее и сильнее, и пространство-время вблизи нее искривляется. Благодаря возрастанию гравитации на поверхности звезды становится все сложнее и сложнее удалить что-либо от нее, и в результате звезда достигает такой стадии, на которой ничто, включая свет, не может оторваться от ее поверхности. На этой стадии мы говорим, что вокруг звезды формируется "событийный горизонт", поскольку ни один сигнал не способен донести до окружающего мира известия о том, что происходит на поверхности звезды. Пространство, окружающее звезду, очень сильно искривлено, и даже свет не может вырваться из этой тюрьмы. Мы не можем увидеть такую звезду, поскольку ее свет не может дойти до нас. По этой причине такие звезды называются "черными дырами". Существование "черных дыр" было предсказано уже в 1916 году, и об этом впоследствии вспомнили в связи с недавно открытыми звездными явлениями, которые могут косвенно доказать существование "черных дыр", так как свидетельствуют о том, что тяжелая звезда движется по орбите вокруг некоего невидимого объекта, который может представлять собой "черную дыру".

 

 "Черные дыры" принадлежат к числу наиболее загадочных и необычных объектов, исследуемых современной астрофизикой, и служат иллюстрацией действия теории относительности. Сильная искривленность пространства-времени в районе черной дыры не только не позволяет лучам света достичь нас, но также оказывает значительное влияние на время. Если бы на поверхности звезды, которая приближается к своей гибели, находились часы, доступные нашему зрению, то мы увидели бы, что течение времени на циферблате этих часов постепенно замедляется по мере того, как звезда приближается к своей гибели, а когда звезда превращается в "черную дыру" показания часов вообще перестанут доходить до нас со светом. Для стороннего наблюдателя поток времени на поверхности звезды замедляется по мере продвижения звезды к гибели и полностью останавливается на уровне событийного горизонта. Поэтому можно утверждать, что процесс абсолютной гибели звезды бесконечен. Однако с самой звездой в момент достижения ею событийного горизонта ничего особенного не происходит. Течение времени остается тем же, и через некоторый, конечный период времени звезда прекращает свое существование, сокращаясь до размеров точки, имеющей невероятно большую плотность. Итак, сколько времени занимает продвижение звезды к гибели — бесконечность или некоторый промежуток времени? В мире теории относительности такой вопрос просто не имеет никакого смысла. Продолжительность существования гибнущей звезды, как и все прочие промежутки времени, относительна и зависит от системы координат, выбранной наблюдателем. # # То есть, чтобы достичь нирваны и выпасть из времени, # достаточно достичь скорости света? — АБ. #

 

 Общая теория относительности полностью отказывается от классических представлений о пространстве и времени, как о категориях, имеющих абсолютную и самостоятельную природу. Относительны не только все измерения в пространстве и времени, зависящие от состояния движения наблюдателя, но и сама структура пространства-времени определяется тем или иным распределением вещества во Вселенной. В различных частях Вселенной пространство характеризуется той или иной степенью искривленности, и время течет с разной скоростью. Таким образом, мы приходим к выводу о том, что наши представления о трехмерном евклидовом пространстве и о линейном времени коренятся в области наших повседневных знаний о физическом мире и оказываются бесполезными за пределами этой области.

 

 Восточные мудрецы тоже говорят о том, что переход к более высоким состояниям сознания обогащает человеческое восприятие, и признают, что одной из неотъемлемых характеристик необычных состояний сознания является радикально новый подход к понятиям времени и пространства. Они подчеркивают не только тот факт, что медитация открывает путь в многомерное пространство, но и тот факт, что при этом исчезает привычное ощущение хода времени. Вместо линейной последовательности отдельных мгновений они имеют дело с бесконечным, безвредным и, тем не менее, динамически настоящим — по их собственным утверждениям. В приведенных ниже отрывках три восточных мистика рассуждают о восприятии этого "вечного сейчас": даосский мудрец Чжуан-цзы, шестой патриарх дзэн Хуэйнэн и современный исследователь буддизма Д. Т. Судзуки.

 

"Забудем о течении времени; забудем о противостоянии суждений. Обратимся к бесконечности и займем свое место в ней" [17, гл. 2]. ЧЖУАН-ЦЗЫ

 

"Абсолютное спокойствие — это мгновение настоящего, хотя оно заключено в этом моменте, этот момент не имеет границ, и в этом — вечное наслаждение" [79,201]. ХУЭЙ-НЭН

 

"В этом духовном мире не существует разграничения времени на прошлое, настоящее и будущее: они сливаются в одном единственном мгновении животрепещущего бытия... Этот момент озарения содержит в себе прошлое и будущее, но не стоит на месте со всем своим содержимым, а находится в непрестанном движении" [73, 148]. Д. Т. СУДЗУКИ

 

 Практически невозможно рассказать об ощущении бесконечности и безвременности настоящего, поскольку слова типа "безвременный", "настоящее", "прошлое", "мгновение" и т. д. относятся к довольно условным представлениям о времени. Поэтому очень сложно осознать истинное значение выше приведенных высказываний мистиков, однако современная физика, опять же, может нам помочь, изобразив графически, каким образом ее теории преодолевают ограниченность обычных представлений о времени.

 

В релятивистской физике история объекта — скажем, частицы — может быть запечатлена на так называемом "пространственно-временном графике" (см. рис. 20). На этих графиках горизонтальная ось соответствует пространству (точнее, одному из его измерений: двумя остальными приходится пренебречь для того, чтобы можно было изобразить график на плоскости), а вертикальная — времени. Путь частицы в пространстве-времени называется ее "мировой линией". Если частица покоится, она, тем не менее, движется во времени, и ее мировая линия в данном случае представляет собой вертикальную линию. Если частица перемещается в пространстве, ее мировая линия становится наклонной: чем значительней наклон, тем выше скорость частицы. Заметим, что во времени частицы могут двигаться только вверх, в то время как в пространстве они способны перемещаться как вправо, так и влево. Их мировые линии могут приближаться к горизонтали, но никогда не совпадают с последней, так как это означало бы, что перемещение частицы от одной точки в другую происходит мгновенно.

 

 Пространственно-временные графики используются в релятивистской физике для изображения взаимодействия между различными частицами. Для каждого процесса можно построить описывающий его график и вывести математическую формулу, характеризующую вероятность данного процесса. Так, процесс столкновения или "рассеивания" электрона и протона можно представить в виде графика на рис. 21. Этот график прочитывается следующим образом (снизу вверх согласно течению времени): Электрон, обозначенный как е из-за своего отрицательного заряда, сталкивается с фотоном, обозначенным как g "гамма"; электрон поглощает фотон, продолжая движение с несколько изменившейся скоростью (на графике это отражается при помощи изменения угла наклона мировой линии); через некоторое время электрон испускает фотон, и восстанавливает первоначальное направление движения. Теория, рассматривающая эти пространственно-временные графики и сопровождающие их математические формулы, называется квантовой теорией поля и является одной из самых важных релятивистских теорий современной физики, к рассмотрению которых мы перейдем позднее. Для продолжения разговора о пространственно-временных графиках нам достаточно познакомиться с двумя наиболее характерными особенностями этой теории, первая из которых заключается в том, что все взаимодействия сводятся к возникновению и исчезновению частиц, как, например, к поглощению и последующему испусканию фотона, изображенному на нашем графике; вторая имеет отношение к принципиальной симметричности частиц и античастиц. Для каждой частицы существует аналогичная античастица с такой же массой и противоположным зарядом. Так, античастица электрона называется "позитрон" и обычно обозначается как е+. Для фотона, не имеющего электрического заряда, античастицей будет сам фотон. Фотон может спонтанно распадаться на позитрон и электрон, а последние, в свою очередь, могут объединиться и образовать фотон при обратном процессе аннигиляции.

 

 Существует уловка, которая позволяет существенно упростить пространственно-временные графики. Стрелка на мировой линии используется в данном случае не для обозначения направления движения частицы, так как очевидно, что все частицы движутся во времени вперед, а по графику (рис. 20), соответственно, вверх. Стрелка используется для того, чтобы провести различие между частицами и античастицами: если стрелка направлена вверх, мы имеем дело с частицей (например, с электроном), а если она указывает вниз, перед нами — античастица (соответственно, позитрон). Фотон, который является античастицей сам для себя, мы будем обозначать линией без стрелки. Внеся эту модификацию, мы можем смело отказаться от всех подписей на графике, не рискуя при этом впасть в ошибку: все линии со стрелками обозначают электроны, все линии без стрелок — фотоны. Для дальнейшего упрощения графика нам следует отказаться от осей координат пространства и времени, памятуя о том, что ось времени имеет направление снизу вверх, а продвижение в пространстве направлено слева направо. В результате пространственно-временной график, изображающий столкновение фотона с электроном, приобретает следующий вид (см. рис. 22):

Для того, чтобы построить график, изображающий столкновение фотона с позитроном, требуется только изменить направление стрелок (см. рис. 23):

 

До сих пор мы не встретили на пространственно-временных графиках ничего необычного. Мы читали их снизу вверх, следуя подсказке наших условных представлений о линейном течении времени. Однако дело принимает совсем другой, неожиданный оборот при построении графиков столкновения фотона с позитроном. Математические формулы теории поля предоставляют возможность двоякой интерпретации подобного графика: на нем можно увидеть либо позитроны, перемещающиеся во времени вперед, или же электроны, ПЕРЕМЕЩАЮЩИЕСЯ ВО ВРЕМЕНИ НАЗАД! В математическом отношении эти два варианта абсолютно идентичны: движение античастицы из прошлого в будущее и движение частицы из будущего в прошлое выражаются при помощи одной и той же формулы. Следовательно, мы можем утверждать, что два наших графика (рис. 24) — один и тот же процесс, разворачивающийся во времени в различных направлениях. На обоих графиках мы вправе увидеть столкновение фотона и электрона, и разница между ними будет заключаться только в том, что в первом случае частицы движутся во времени вперед, а во втором случае — в противоположном направлении. (Прерывистые линии всегда обозначают движение фотона, вне зависимости от направления его движения во времени, так как античастицей для фотона является он сам). Следовательно, в релятивистской теории взаимодействия частиц мы обнаруживаем полную временную симметрию. Для каждого процесса существует точно такой же процесс, развертывающийся в обратном направлении во времени, в котором принимают участие античастицы. Правда, последние экспериментальные данные позволяют сделать предположение о том, что это положение, по всей видимости, не может быть применено к специфическому процессу, носящему название "сверхслабого взаимодействия". За этим единственным исключением, все остальные взаимодействия частиц обнаруживают принципиальную симметричность во временном отношении.

 Рассмотрим процесс, изображенный на рис. 25, для того, чтобы убедиться в том, что эта удивительная особенность мира субатомных частиц оказывает самое сильное воздействие на наши представления о пространстве и времени. При традиционном прочтении графика, снизу вверх, мы интерпретируем его следующим образом: электрон е, изображенный сплошной линией, сближается с фотоном, изображенным пунктиром; в точке А фотон преобразуется в электронно-позитронную пару, электрон удаляется вправо, а позитрон — влево; затем позитрон сталкивается с первым электроном в точке В, происходит процесс аннигиляции, результатом которого является возникновение фотона, движущегося влево. Этот процесс можно рассмотреть и как взаимодействие двух фотонов с одним и тем же электроном, дважды изменяющим направление своего движения во времени. В последнем случае мы руководствуемся указаниями стрелок на линии электрона на всем протяжении его пути; электрон перемещается в точку В, испускает фотон и начинает двигаться в прошлое до точки А; здесь он поглощает исходный фотон и снова начинает двигаться в будущее. В определенном смысле, второй вариант гораздо проще первого, так как в нем мы имеем дело с мировой линией одной частицы. С другой стороны, при этом мы сталкиваемся с серьезными языковыми проблемами. Электрон перемещается "сначала" в точку В, а "потом" в точку А; тем не менее, поглощение фотона в точке А предшествует эмиссии другого фотона в точке В.


Дата добавления: 2019-02-12; просмотров: 133; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!