Равномерное движение по окружности. Линейная и угловая скорость.



Любое движение на достаточно малом участке траектории возможно приближенно рассматривать как равномерное движение по окружности. В процессе равномерного движения по окружности значение скорости остается постоянным, а направление вектора скорости изменяется. . . Вектор ускорения при движении по окружности направлен перпендикулярно вектору скорости (направленному по касательной), к центру окружности. Промежуток времени, за который тело совершает полный оборот по окружности, называется периодом. . Величина, обратная периоду, показывающая количество оборотов в единицу времени, называется частотой . Применив эти формулы, можно вывести, что , или . Угловая скорость (скорость вращения) определяется как . Угловая скорость всех точек тела одинакова, и характеризует движения вращающегося тела в целом. В этом случае линейная скорость тела выражается как , а ускорение – как .

Принцип независимости движений рассматривает движение любой точки тела как сумму двух движений – поступательного и вращательного.

 

  1. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. ЭДС самоиндукции. Энергия магнитного поля катушки.

 

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура. По правилу Ленца, возникающий в замкнутом контуре индукционный ток направлен так, что создаваемый им магнитный поток через площадь, ограниченную контуром, стремиться препятствовать тому изменению потока, которое вызывает данный ток. Явление ЭИ находит широкое применение в технике. Оно используется в индукционных генераторах тока, индукционных плавильных печах, трансформаторах, в счетчиках электроэнергии и др

Закон электромагнитной индукции. Правило Ленца Мы знаем, что электрический ток создаёт магнитное поле. Естественно возникает вопрос: «Возможно ли появление электрического тока с помощью магнитного поля?». Эту проблему решил Фарадей, открывший явление электромагнитной индукции, которое за­ключается в следующем: при всяком изменении Магнитного потока, пронизывающего площадь, охватываемую проводящим контуром, в нём возникает электродвижущая сила, называемая э.д.с. индукции. Если контур замкнут, то под действием этой э.д.с. появляется электрический ток, названный индукционньм. Фарадей установил, что э.д.с. индукции не зависит от способа изменения магнитного потока и определяется только быстротой его изменения, т.е.

, ЭДС может возникать при изменении магнитной индукции В, при повороте плоскости контура, относительно магнитного поля. Знак минус в формуле объясняется по Правилу Ленца: Индуктивный ток направлен так, что своим магнитным полем препятствует изменению внешнего магнитного потока, порождающего индукционный ток.  Соотношение называется законом электромагнитной индукции: ЭДС индукции в проводнике равна быстроте изменения магнитного потока, пронизывающего площадь, охватываемую проводником.

Явление самоиндукции. Явление возникновения э.д.с. в том же проводнике, по которому течёт переменный ток, называется самоин­дукцией, а саму э.д.с. называют э.д.с. самоиндукции. Это явление объяс­няется следующим. Переменный ток, проходящий по проводнику, порож­дает вокруг себя переменное магнитное поле, которое, в свою очередь, создаёт магнитный поток, изменяющийся со временем, через площадь, ог­раниченную проводником. Согласно явлению электромагнитной индукции, это изменение магнитного потока и приводит к появлению э.д.с. са­моиндукции.

Найдём э.д.с. самоиндукции. Пусть по проводнику с индуктивностью L течёт электрический ток. В момент времени t1 сила этого тока равна I1, а к моменту времени t2 она стала равной I2. Тогда магнитный поток, создавае­мый током через площадь ограниченную проводником, в моменты време­ни t1 и t2 соответственно равен Ф1=LI1 и Ф2= LI2 , а изменение DФ магнитного потока равно DФ = LI2 — LI1 = L(I2 — I1) = LDI, где DI =I2— I1 — изменение силы тока за промежуток времени Dt = t2 - t1. Со­гласно закону электромагнитной индукции, э.д.с. самоиндукции равна:    Подставляя в это выражения предыдущую формулу,

 

Получаем    Итак, э.д.с. самоиндукции, возникающая в проводнике, пропорциональна быстроте изменения силы тока, текущего по нему. Соотношение представляет собой закон самоиндукции.

Под действием э.д.с. самоиндукции создаётся индукционный ток, на­зываемый током самоиндукции. Этот ток, согласно правилу Ленца, про­тиводействует изменению силы тока в цепи, замедляя его возрастание или убывание.

Энергия магнитного поля.  При протекании электрического тока по проводнику вокруг него воз­никает магнитное поле. Оно обладает энергией. Можно показать, что энергия магнитного поля, возникающего вокруг проводника с индуктив­ностью L, по которому течёт постоянный ток силой I, равна

 

Билет № 3

1. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности в классической механике.

 

 I закон Ньютона

· Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор пока внешнее воздействие не заставит его изменить это состояние.

· Инерция – стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

· Инерциальные системы отсчета – системы по отношению к которым выполняется I закон Ньютона.

I закон Ньютона утверждает существование и с.о.

 

  М.т. сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешнее воздействие не выведет его из этого состояния.

Инерциальной системой отсчета можно считать гемеоцентрическую с.о.

 

Всякое изменение состояния, любое ускорение, есть результат действия на движущееся тело со стороны других тел.

· Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

· Масса тела – физическая величина, являющаяся одной из основных характеристик матери, определяющая ее инерциальные и гравитационные свойства.

4 вида воздействия.

1. Гравитационное (обусловленное всемирным тяготением)

2. Электромагнитное (осуществляется через магнитное или электрическое поле)

3. Сильное или ядерное (обеспечивающее связь части в атомном ядре)

4. Слабое взаимодействие (ответственные за многие процессы распада элемент. частиц).

Физическое поле – особая форма материи, связывающая частицы вещества в единые системы и передающиеся с конечной скоростью действия одних частиц на другие.

Сила F полностью задана, если указаны ее модуль, направление в пространстве и точки приложения. Прямая вдоль которой направлена сила, называется линией действия силы.

Поле, действующее на мт с силой F, называется стационарным полем, если оно не изменяется с течением времени.

Для стационарного поля необходимо, чтобы создающие его тела покоились относительно инерциальной системы отсчета, использованной в данной задаче.

 

  1. Электрический ток в растворах и расплавах электролитов. Закон электролиза. Определение заряда электрона.

 

Вещества, которые проводят электрический ток называются электролитами. Изменение химического состава раствора или расплава при прохождении через него электрического тока. Обусловленное потерей или присоединении электронов ионами, называют электролизом.

Майкл Фарадей установил, что при прохождении эл. Тока через электролит масса вещества m, выделившегося на электроде, пропорциональна заряду q, прошедшего через электролит:

m=k*q или m=k*I*t.

Зависимость, полученную Фарадеем, называют законом электролиза. Коэффициент пропорциональности k называется электрохимическим эквивалентом.

k=1/e*Na * M/n ==> m=1/e*Na * M/n *I *t.

Коэффициент k численно равен массе выделившегося на электродах вещества при переносе ионами заряда в 1 Кл:

k=m/q; [k]=кг/Кл.

Произведение заряда электрона на число Авогадро называется числом Фарадея: 96500 Кл/моль.

Число Фарадея это электрический заряд, переносимый веществом в количестве 1 моль при электролизе.

В электрическом поле ионы электролита приходят в движение: положительные ионы движутся к катоду, а отрицательные к аноду. Так возникает электрический ток в электролите. При встречи положительного и отрицательного ионов, происходит их соединение – рекомбинация.

С помощью электролиза из солей и оксидов получают многие металлы. Электролитический способ дает возможность получать вещества с малым количеством примесей. Путем электролиза можно наносить тонкие слои металлов, эти слои могут служить защитой изделия от окисления. Такой способ называется – гальваностегией.

При длительном пропускании тока, получается толстый слой металла, который может быть отделен с сохранением формы – гальванопластика. Явление электролиза лежит в основе принципа действия кислотных и щелочных аккумуляторов, где используют обратимость процесса электролиза.

 

Билет № 4

  1. Второй закон Ньютона и границы его применения.

 

Второй закон Ньютона устанавливает связь между кинематической характеристикой движения – ускорением, и динамическими характеристиками взаимодействия – силами. , или, в более точном виде, , т.е. скорость изменения импульса материальной точки равна действующей на него силе. При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы при воздействии каждой из этих сил в отдельности.

При любом взаимодействии двух тел отношение модулей приобретенных ускорений постоянно и равно обратному отношению масс. Т.к. при взаимодействии тел векторы ускорений имеют противоположное направление, можно записать, что . По второму закону Ньютона сила, действующая на первое тело равна , а на второе . Таким образом, .

 

  1. Электрический ток в газах. Самостоятельный и несамостоятельный электрический разряд.

 

Все газы в естественном состоянии не проводят электрического тока. В чем можно убедиться из следующего опыта
Возьмем электрометр с присоединенными к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается положение стрелки электрометра не изменяется. Чтобы заметить уменьшение угла отклонения стрелки электрометра, требуется длительное время. Это показывает, что электрический ток в воздухе между дисками очень мал. Данный опыт показывает, что воздух является плохим проводником электрического тока.
Видоизменим опыт нагреем воздух между дисками пламенем спиртовки. Тогда угол отклонения стрелки электрометра быстро уменьшается, т.е. уменьшается разность потенциалов между дисками конденсатора конденсатор разряжается. Следовательно, нагретый воздух между дисками стал проводником, и в нем устанавливается электрический ток.
Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов атомы и молекулы газов в естественном состоянии являются нейтральными.
2.Ионизация газов.
Вышеописанный опыт показывает, что в газах под влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.
Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий сильного нагрева газа, рентгеновских лучей, , и лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.
Ионизация атома требует затраты определенной энергии энергии ионизации. Для ионизации атома или молекулы.

Самостоятельный разряд - разряд, при котором проводимость газа поддерживается электрическим полем без внешних воздействий. Основным механизмом ионизации газа является ионизация атомов и молекул вследствие ударов электронов.


Дата добавления: 2019-02-12; просмотров: 176; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!