Схемы, снижающие выходное сопротивление



Л. – Ну, хорошо, пользуясь предоставившимся случаем, я напомню тебе, что в рассмотренных ранее схемах мы уже встречались с отрицательной обратной связью и говорили о ее положительных качествах. Помнишь ли ты системы, которые мы использовали для снижения выходного сопротивления усилителя?

Н. – Да, ты говорил мне о катодном и об эмиттерном повторителях. Я помню также странную схему, которую ты назвал «суперэмиттерный повторитель» (см. рис. 50).

Л. – В таком случае теперь ты должен понять, почему эта схема обладала интересными свойствами. Изображенная на рис. 51 схема представляет собой двухкаскадный усилитель с очень большим коэффициентом усиления, в котором непосредственная связь осуществлена благодаря использованию взаимно дополняющих транзисторов n‑р‑n и р‑n‑р . Входное напряжение подается между эмиттером и базой первого транзистора, а выходное напряжение снимается с нагрузочного резистора, включенного в цепь коллектора второго транзистора, иначе говоря, между коллектором этого транзистора и корпусом.

Соединив эмиттер первого транзистора с коллектором второго, в схеме, приведенной на рис. 50, мы подали на этот эмиттер все выходное напряжение, которое, как и в других случаях, вычитается из входного напряжения. Здесь коэффициент β равен единице. Общий коэффициент усиления новой схемы тем ближе будет к единице, чем выше был первоначальный коэффициент усиления усилителя, схема которого изображена на рис. 51[23].

Точно так же обстоит дело и с простым эмиттерным повторителем (см. рис. 49). Если нагрузочный резистор оставить включенным между эмиттером и корпусом, а входное напряжение приложить между эмиттером и базой (входное напряжение в этом случае подают по двум отдельным изолированным от корпуса проводам), то ты получишь классический усилитель.

Н. – Не может быть! Ведь нагрузочный резистор включен не в цепь коллектора, а в цепь эмиттера.

Л. – Это не имеет никакого значения. Важно только одно, а именно, что ток транзистора управляется напряжением, приложенным между базой и эмиттером, и что этот ток протекает по резистору, создавая на его выводах переменное напряжение. А то что резистор включен не в цепь коллектора, а в цепь эмиттера, существенного значения не имеет, потому что в цепях этих электродов протекают практически одинаковые токи. Как ты видишь, от этой схемы переходят к схеме эмиттерного повторителя, изображенной на рис. 49, подавая входное напряжение между базой и корпусом. В этих условиях выходное напряжение вычитается из входного и получаемая в результате разность прилагается между базой и эмиттером. Это тоже полная отрицательная связь, т. е. отрицательная обратная связь с коэффициентом β , равным единице.

Н. – Теперь я понимаю, какой интерес представляют эти схемы. Совершенно ясно, что они имеют низкое выходное внутреннее сопротивление, очень стабильный коэффициент усиления и высокое входное сопротивление.

 

 

Автоматическая система регулирования скорости

Л. – Совершенно верно. А теперь для завершения нашей темы мне хотелось немного рассказать тебе об автоматической системе регулирования скорости, т. е. о том, как заставить двигатель покорно выдерживать заданную скорость и по нашему желанию изменять ее.

Н. – Ну, это совсем несложно. Я полагаю, что в этом случае ты воспользуешься синхронным двигателем, который будешь питать переменным напряжением строго заданной частоты. Разве не так?

Л. – Действительно, в некоторых случаях используют такое решение. Но иногда бывает трудно сделать широкополосный усилитель и генератор переменной частоты, способные давать достаточную мощность для приведения в действие большого двигателя. Обычно предпочтение отдают двигателю постоянного тока, снабженному преобразователем скорости, например тахометрическим генератором.

Н. – А что будет делать здесь эта система демпфирования?

Л. – Тахометрический генератор может служить для демпфирования в системе автоматического регулирования положением, как, например, для вращения антенны твоего друга, но его можно использовать и иначе (рис. 147).

 

 

Рис. 147. Для поддержания постоянства частоты вращения двигателя на вход управляющего им усилителя подают разность между стабильным управляющим напряжением е0 и пропорциональным скорости напряжением и , которое выдает спаренный с двигателем тахометрический генератор.

 

Вырабатываемое им напряжение и сравнивается с фиксированным управляющим напряжением е0 ; разность этих напряжений e0 – u подается на вход усилителя, выходное напряжение которого управляется двигателем. При снижении скорости двигателя управляющее им напряжение повысится, что позволит двигателю справиться с тормозящим усилием. Таким образом осуществляется автоматическое управление частотой вращения.

Для управления скоростью двигателя широко используют управляющие системы на тиратронах, о которых я тебе уже говорил; в этом случае скорость двигателя заставляют воздействовать на фазу зажигания тиратрона. Такие системы получили наибольшее распространение на заводах для управления электродвигателем различных станков: они позволяют заставить громадный двигатель вращаться медленно, но с большим крутящим моментом или наоборот с большой, но всегда строго заданной частотой вращения.

Н. – Я внимательно слушал твои объяснения, но теперь мне кажется, что моя способность восприятия или, как ты говоришь, моя форма резко ухудшается. Я полагаю, что лучше перенести продолжение нашей беседы на другой день.

 

Беседа шестнадцатая


Дата добавления: 2019-02-12; просмотров: 207; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!