Глава 6. Добро пожаловать в мультиверс



 

Если б расчищены были врата восприятия, всякое предстало бы человеку, как оно есть – бесконечным. Ибо человек замуровал себя так, что видит все чрез узкие щели пещеры своей.

Уильям Блейк

«Бракосочетание Неба и Ада»

 

Бесконечны лишь Вселенная и человеческая глупость; причем насчет Вселенной я не уверен.

Приписывается Альберту Эйнштейну

 

Готовы ли вы к спорным темам? Наука, с которой мы до сих пор знакомились в этой книге, сегодня в основном не вызывает разногласий. Но теперь мы вступаем в дискуссионную область: многие мои коллеги-физики будут горячо агитировать «за» или «против» идей, о которых сейчас пойдет речь.

 

Мультиверс I уровня

 

Существует ли точная ваша копия, читающая мою книгу и решившая отложить ее, не закончив это предложение? Человек, живущий на планете Земля с туманными горами, плодородными полями и растущими городами, – планете, находящейся в Солнечной системе вместе с другими 7 планетами? Жизнь этого человека была идентична вашей вплоть до настоящего момента, когда, решив продолжить чтение, вы породили расхождение между своими жизнями.

Вероятно, вы сочтете идею странной, и, должен признаться, у меня была такая же инстинктивная реакция. И все же нам, по-видимому, придется с ней смириться, поскольку простейшая и наиболее популярная сейчас космологическая модель предсказывает, что такой человек действительно существует в галактике на расстоянии около 101029м. Для этого утверждения даже не требуется спекулятивных допущений современной физики – достаточно того, что пространство бесконечно и более или менее однородно заполнено материей. Ваш двойник – это просто предсказание теории вечной инфляции, которая согласуется со всеми современными наблюдательными данными и служит основой большинства расчетов и моделей, представляемых на космологических конференциях.

 

Что такое Вселенная?

Прежде чем говорить о других вселенных, важно пояснить, что мы подразумеваем под собственной. Вот терминология, которой я буду пользоваться:

 

Физическая реальность – это все, что существует.

Наша Вселенная – это часть физической реальности, которую мы в принципе можем наблюдать.

 

Если пренебречь квантовыми осложнениями, которыми мы займемся в гл. 7, следующее определение Вселенной эквивалентно приведенному.

 

 

Наша Вселенная  – это сферическая область пространства, в которой свету хватит времени, чтобы дойти до нас за 14 млрд лет, прошедших с момента нашего Большого взрыва.

 

В предыдущей главе мы назвали эту область наблюдаемой Вселенной . Более наукообразный синоним, популярный у астрономов, – объем внутри космологического горизонта . Астрономы любят говорить и о нашем хаббловском объеме, размер которого примерно таков же и определяется как область, внутри которой галактики удаляются медленнее, чем свет.

Имея в виду, что могут существовать другие вселенные, я считаю излишне высокомерным называть нашу собственную – этой Вселенной, так что я постараюсь вовсе избегать данного термина. Но это, конечно, дело вкуса, например, ньюйоркцы называют свой город просто «Городом», а американцы и канадцы говорят о своем бейсбольном чемпионате как о «Мировой серии».

Хотя эти определения могут показаться разумными, имейте в виду, что некоторые авторы применяют эти термины иначе. Кое-кто использует выражение «эта Вселенная» (которого я избегаю) для обозначения всего, что существует, и в таком случае по определению не может быть никаких параллельных вселенных.

Теперь, когда мы дали определение нашей Вселенной, хорошо бы узнать, насколько она велика. Вселенная – это сферическая область с центром на планете Земля. Материя у края Вселенной, от которой свет едва успел дойти до нас за 14 млрд лет, находится сейчас на расстоянии 5 × 1026 м. Насколько сегодня известно, Вселенная содержит около 1011 галактик, 1023 звезд, 1080 протонов и 1089 фотонов.

Это, конечно, огромное количество материи, но может ли ее в дальнем космосе быть еще больше? Теория инфляции предсказывает, что так и есть. Вселенная вашего двойника, если она существует, – сфера такого же размера, центр которой где-то очень далеко от нас. Мы не можем ее увидеть и не можем ни с чем в ней взаимодействовать, поскольку ни свет, ни какая-либо другая информация из нее еще не успели до нас дойти. Это простейший пример параллельных вселенных. Я предпочитаю называть эту разновидность – отдаленную область пространства размером с нашу Вселенную – параллельной вселенной I уровня. Все параллельные вселенные I уровня образуют мультиверс I уровня. В табл. 6.1 даны определения всех разновидностей мультиверсов, о которых говорится в книге, и поясняется, как они взаимосвязаны.

Само наше определение Вселенной будто подразумевает, что понятие наблюдаемой Вселенной относится к небольшой части огромного мультиверса, который навсегда останется в ведении метафизики. Эпистемологическая граница между физикой и метафизикой определяется исходя из возможности экспериментальной проверки теории, а не из того, насколько странной теория кажется и ссылается ли она на ненаблюдаемые сущности. Экспериментальные прорывы, ставшие возможными благодаря развитию технологий, расширяют горизонты физики, которые охватывают все более абстрактные (и в момент их появления контринтуитивные) представления, например: сферическая вращающаяся Земля, электромагнитное поле, замедление времени на высоких скоростях, квантовые суперпозиции, искривленное пространство и черные дыры. Становится все яснее, что теории, основанные на современной физике, в действительности могут быть предсказательными, эмпирически проверяемыми и фальсифицируемыми, несмотря на то, что они включают в себя понятие мультиверса. В оставшейся части этой книги мы будем исследовать целых четыре уровня параллельных вселенных, и лично для меня самый интересный вопрос состоит не в том, существует ли мультиверс (поскольку существование его I уровня не вызывает сомнений), а в том, сколько внутри него уровней.

 

На что похожи параллельные вселенные I уровня?

Допустим, инфляция действительно имела место и сделала наше пространство бесконечным. В таком случае существует бесконечное число параллельных вселенных I уровня. Более того, как показано на рис. 5.8, бесконечное пространство в момент его образования было заполнено материей, которая, как и в нашей Вселенной, постепенно образовывала атомы, галактики, звезды и планеты. Это значит, что большинство параллельных вселенных I уровня имеет в общих чертах такую же космологическую историю, как и наша Вселенная. Однако большинство их отличается от нашей Вселенной в деталях, поскольку их начальные состояния немного различались. Причины этого, как я говорил в предыдущей главе, в том, что первичные флуктуации, ответственные за появление всех космических структур, были порождены квантовыми флуктуациями, которые во всех отношениях совершенно случайны.

Физическое описание нашего мира традиционно делится на две части: с чего все началось и как все изменяется. Иными словами, мы имеем начальные условия и законы физики, указывающие, как начальные условия меняются с течением времени. Наблюдатели в параллельных вселенных I уровня открывают точно такие же законы физики, как и мы, однако с иными начальными условиями. Так, частицы начинают движение из немного иных мест и двигаются со слегка отличными скоростями. Именно небольшие различия определяют, что в конце концов случится в соответствующих вселенных: какие области пространства превратятся в галактики, а какие станут межгалактическими пустотами, у каких звезд будут планеты, на каких из них появятся динозавры и на каких они погибнут из-за столкновения с астероидом, и т. д. Иначе говоря, вызванные квантовыми явлениями различия между параллельными вселенными, со временем усиливаясь, порождают совершенно разные истории. Короче, студенты в параллельных вселенных I уровня будут изучать одни и те же законы на занятиях по физике, но разные факты на занятиях по истории.

Но существуют ли вообще эти студенты? Кажется совершенно невероятным, чтобы ваша жизнь была бы точно повторена, поскольку для этого требуется очень много совпадений: Земля должна образоваться, на ней должна развиться жизнь, должны вымереть динозавры, ваши родители должны встретиться, вам должно прийти в голову прочесть эту книгу и т. д. Но вероятность того, что все это случится, определенно не равна нулю, поскольку именно это фактически случилось здесь, в нашей Вселенной. Если бросить игральные кости достаточное число раз, гарантированно произойдут даже самые маловероятные вещи. При бесконечном числе параллельных вселенных I уровня, порожденных инфляцией, квантовые флуктуации, по сути, и бросают кости бесконечное число раз, со стопроцентной уверенностью обещая, что ваша жизнь повторится. На самом деле таких повторений бесконечно много, поскольку и ничтожная доля бесконечного числа остается бесконечным числом.

Но бесконечное пространство содержит не только ваши точные копии. В нем гораздо больше людей, которые очень похожи на вас. Так что если бы вам удалось встретиться с человеком, чей облик идеально похож на ваш, вполне вероятно, что он говорил бы на языке, который вы не смогли бы понять, и прожил бы жизнь, совершенно не похожую на вашу. Но среди всех ваших бесконечных подобий там, на других планетах, есть и некто, разговаривающий по-английски, живущий на планете, идентичной Земле, и с жизнью, неотличимой от вашей. Этот человек чувствует то же, что и вы. И все же могут быть крайне незначительные отличия в том, как движутся частицы в мозге вашего двойника – отличия слишком малые, чтобы быть в данный момент ощутимыми, но достаточные, чтобы в следующую секунду заставить его отложить книгу, тогда как вы продолжите чтение, и с этого момента ваши жизни начнут расходиться.

Возникает интересный философский вопрос, которым мы займемся в гл. 11. Если действительно существует много ваших копий с одинаковым прошлым и воспоминаниями, это разрушает традиционное понятие детерминизма: вы не сможете предсказать собственное будущее, даже если обладаете полным знанием всей прошлой и будущей истории космоса! Дело в том, что нет способа определить, какой из копий являетесь вы (все они чувствуют себя вами ). И все же с некоторого момента их жизни обычно расходятся, поэтому большее, что вы можете сделать – это предсказать вероятности событий, которые могут с вами случиться.

Короче говоря, в бесконечном пространстве, порожденном инфляцией, случается все, что может случиться согласно законам физики. И случается все бесконечное число раз. Это значит, что существуют параллельные вселенные, где вы никогда не получали штраф за парковку, где вы носите другое имя, где вы выиграли в лотерею миллион, где Германия победила во Второй мировой войне, где по Земле продолжают бродить динозавры, где, наконец, Земля вовсе не образовалась. Хотя каждый из этих вариантов имел место в бесконечном числе вселенных, некоторые случились в большей их доле, и осмысление этого факта приводит к интереснейшим выводам. Мы поговорим об этом в гл. 11.

 

Параллельные вселенные ненаучны?

До сих пор я рассказывал здесь в основном о вещах, которые, надеюсь, вы находили вполне разумными. Конечно, кое-какие научные открытия, которые я описывал, в свое время считались спорными, но сегодня они общепризнанны. Тем не менее в этой главе, вероятно, все кажется слегка ненормальным. А рассуждения о наших копиях могут показаться просто безумием. Так что прежде чем лезть дальше в эту кроличью нору, следует сделать паузу. Прежде всего, действительно ли научно говорить о таких вещах, которые мы не можем даже наблюдать, или я пересек черту и занялся чистым философствованием?

Философ Карл Поппер популяризировал максиму, ныне широко признанную: «Если нечто не фальсифицируемо, то оно ненаучно». Физика – это постоянная проверка математических теорий с помощью наблюдений: если теория в принципе не может быть проверена, то чисто логически ее невозможно фальсифицировать, а значит, она ненаучна. Отсюда вытекает, что надежда оказаться научными есть лишь у теорий . Так мы приходим к очень важному тезису:

 

Параллельные вселенные – это не теория, а предсказание некоторых теорий.

 

Таких, как теория инфляции. Параллельные вселенные (если они существуют) – это объекты, а объекты не бывают научными, так что параллельные вселенные могут быть научны не более, чем галлюцинации.

Поэтому нам следует переформулировать свои сомнения в терминах теорий. Это приводит к ключевому вопросу: являются ли теории, предсказывающие существование ненаблюдаемых сущностей, нефальсифицируемыми и поэтому ненаучными?

Вот здесь мне становится действительно интересно, поскольку на данный вопрос есть четкий ответ: чтобы теория была фальсифицируемой, не обязательно иметь возможность наблюдать и проверять все ее предсказания, достаточно хотя бы одного. Рассмотрим следующие аналогии:

 

 

Поскольку общая теория относительности (ОТО) Эйнштейна успешно предсказала многие наблюдаемые явления (например характер движения Меркурия вокруг Солнца, искривление света под влиянием гравитации и гравитационное замедление часов), мы считаем ее успешной научной теорией и всерьез принимаем такие ее предсказания, которые касаются вещей, коих мы наблюдать не можем , например пространства, продолжающегося внутри черной дыры под ее горизонтом событий, а также того, что (в противоположность ранним недоразумениям) на самом горизонте ничего необычного не происходит. Аналогично, успешные предсказания теории инфляции, описанные в двух предыдущих главах, делают ее научной теорией, а значит можно воспринимать всерьез и другие ее предсказания: проверяемые (например относительно того, что будет измерено в будущих экспериментах по исследованию космического микроволнового фона) и кажущиеся непроверяемыми, вроде существования параллельных вселенных. Последние три примера в таблице выше относятся к теориям, которые я разберу ниже, и предсказывают дополнительные типы параллельных вселенных.

Еще одна важная особенность физических теорий состоит в том, что если вам нравится одна из них, придется «покупать» ее в полной комплектации. Нельзя сказать: «Мне нравится, как ОТО объясняет орбиту Меркурия, но я не люблю черные дыры, так что хочу обойтись без них». Вы не можете «купить» ОТО без черных дыр, в отличие от кофе без кофеина. ОТО – это жесткая математическая конструкция, которая не допускает точных настроек; вам придется либо принять все ее предсказания, либо с нуля изобрести другую математическую теорию, которая согласуется со всеми успешными предсказаниями ОТО и одновременно предсказывает, что черных дыр не существует. Это оказывается чрезвычайно сложным делом, и до сих пор подобные попытки оканчивались ничем.

Так вот, и параллельные вселенные – не аксессуар к теории вечной инфляции. Они часть пакета, и если они вам не нравятся, придется найти другую математическую теорию, которая решит проблему взрыва, проблему горизонта, проблему плоской геометрии, а также сгенерирует первичные космологические флуктуации, но при этом не будет предсказывать параллельных вселенных. Это оказалась крайне сложно. Вот почему все больше моих коллег, часто нехотя, начинают всерьез воспринимать параллельные вселенные.

 

Аргументы в пользу параллельных вселенных I уровня

Итак, мы усвоили важную мысль: не нужно чувствовать вину за разговоры о параллельных вселенных в этой книге, несмотря на то, что она задумана как научная. Однако теория не становится верной только оттого, что она научна, так что разберем доводы в пользу параллельных вселенных.

Ранее мы убедились, что мультиверс I уровня, включая ваших двойников, – это логическое следствие вечной инфляции. Мы также знаем, что теория инфляция – самая популярная сейчас в научном сообществе теория, описывающая раннюю Вселенную, и что инфляция обычно бывает вечной, а значит, порождает мультиверс I уровня. Иными словами, лучшим аргументом в пользу мультиверса I уровня являются свидетельства в пользу инфляции. Доказывает ли это существование ваших двойников? Конечно, нет. На данный момент мы не можем быть совершенно уверены, что инфляция вечна, или даже что она вообще имела место. К счастью, изучение инфляции сейчас очень привлекательно и в теоретическом, и в экспериментальном отношении, так что в ближайшие годы мы скорее всего получим новые данные за или против теории вечной инфляции (и, следовательно, за или против мультиверса I уровня).

До сих пор мы вели разговор в контексте теории инфляции. Но действительно ли мультиверс I уровня неразрывно связан с инфляцией? Нет, это не так. Чтобы мультиверса I уровня вовсе не существовало, не должно существовать никакого пространства за пределами области, доступной нашим наблюдениям. У меня нет ни одного коллеги, который выступал бы за столь малый размер пространства. Придерживающийся такого мнения подобен страусу, спрятавшему голову в песок и утверждающему, что существует лишь то, что он видит. Все мы признаем существование вещей, которых не видим, но смогли бы увидеть, если бы мы переместились или подождали (например, находящихся за горизонтом кораблей). Объекты за нашим космологическим горизонтом имеют такой же статус, поскольку наблюдаемая Вселенная ежегодно увеличивается примерно на световой год, и до нас доходит свет из все более далеких областей.

А что можно сказать об аргументах в пользу существования наших двойников? Если мы проанализируем приведенные выше рассуждения, то увидим: свойство мультиверса I уровня, выражающееся словами «Случается все, что может случиться», вытекает из двух отдельных логических допущений, и оба они могут быть корректными и без инфляции:

 

1. Пространство и материя бесконечны. Первоначально существовало бесконечное пространство, заполненное горячей расширяющейся плазмой.

2. Случайные зародыши; первоначально имелся механизм, действующий так, что в любой области могли возникнуть любые возможные первичные флуктуации, кажущиеся случайными.

 

Проанализируем эти два предположения. Я думаю, второе из них весьма разумно, вне зависимости от инфляции. Согласно нашим наблюдениям, случайного вида первичные флуктуации существуют, так что мы знаем, что некий механизм их породил. Мы тщательно измерили их параметры, используя космический микроволновый фон и карты галактик, и обнаружили, что их статистические свойства соответствуют тому, что в теории вероятности называют гауссовым случайным полем , и это удовлетворяет предположению № 2. Более того, если инфляции не было и далекие области пространства не могли бы взаимодействовать друг с другом (рис. 5.2 ), этот механизм гарантированно «бросал бы игральные кости» независимо в каждой области.

Что можно сказать о предполагаемой бесконечности пространства и материи? Прежде всего, бесконечное пространство, достаточно равномерно заполненное материей, было стандартным предположением общепринятой космологии задолго до изобретения инфляции, и сегодня это часть так называемой стандартной космологической модели. Тем не менее это предположение (и вытекающее из него существование мультиверса I уровня) считается спорным. Отчасти эти соображения привели в 1600 году на эшафот Джордано Бруно. Тем, кто публиковался относительно недавно (в их числе Джордж Эллис, Джефф Брандрит, Жауме Гаррига и Александр Виленкин), костер уже не грозил, но все же давайте критически подойдем к допущению бесконечности пространства и бесконечности материи.

Хотя простейшая модель пространства, предложенная еще Евклидом, бесконечна (гл. 2 ), эйнштейновская общая теория относительности предлагает различные варианты того, как именно пространство может быть конечным. Если пространство свернуто как гиперсфера (рис. 2.7 ), общий объем такой гиперсферы должен быть по меньшей мере стократно больше той ее части, которую мы можем наблюдать – нашей Вселенной. Иначе невозможно объяснить, почему видимая часть пространства такая плоская, что эксперименты по изучению космического микроволнового фона не обнаруживают никакой кривизны. Иными словами, даже если мы живем в конечном пространстве вроде гиперсферы, все равно существуют по крайней мере сотни параллельных вселенных I уровня.

А что можно сказать относительно конечного пространства торообразного – как бублик – типа (гл. 2 )? Геометрия такого пространства плоская, но, начав движение в определенном направлении, в конце концов возвращаешься в исходную точку. Похожее пространство смоделировано в компьютерных играх, в которых можно вылететь за границу игрового поля и сразу же появиться с другой его стороны, так что, если заглянуть достаточно далеко вперед, вы увидите перед собой собственный затылок, а во всех направлениях – бесконечно много ваших регулярно повторяющихся копий, будто вы оказались в комнате с зеркальными стенами. Если у нашего пространства такие свойства, то какой минимальный размер оно может иметь? Ясно, что оно должно быть гораздо больше нашей Галактики, поскольку в телескопы мы не видим бесконечного числа копий Млечного Пути, выстроившихся аккуратными рядами. Но если бы размер составлял, скажем, 10 млрд световых лет, этот тест уже не сработал бы: мы не увидели бы ближайшей копии нашей Галактики, поскольку 10 млрд лет назад ее не существовало. Есть еще более точный тест: мы можем найти узнаваемый объект вроде яркой галактики в 5 млрд световых лет от нас, а затем поискать тот же объект в 5 млрд световых лет в противоположном направлении. Такие поиски проводились и не дали результата. Наиболее чувствительный тест из всех заключается в использовании самого далекого объекта, который мы можем увидеть, – космического микроволнового фона, на котором можно искать паттерны в противоположных направлениях (рис. 6.1 ). Многие исследовательские группы, включая меня с Анжеликой, пытались это сделать, но ничего не нашли. Кроме того, если пространство имеет конечный объем, в нем разрешены лишь некоторые частоты возмущений, подобно тому, как воздух во флейте может вибрировать лишь на определенных частотах. Это вносит в спектр мощности микроволнового фона определенные искажения, которые Анжелика и другие ученые не обнаружили. Короче говоря, все еще сохраняется возможность того, что пространство конечно. Однако выбор моделей с конечным пространством сильно ограничен наблюдениями, и все пока допустимые пространства имеют объем, сопоставимый с объемом Вселенной или превышающий его. Более того, при наличии именно сейчас лишь одной Вселенной возникает необъяснимое совпадение: почему именно сейчас? Ведь ранее, когда свет дошел до нас только из небольшой части пространства, вселенных должно было иметься больше одной.

 

Рис. 6.1.  Если в тороидальной вселенной вы пролетите через правую окружность (справа ), то немедленно окажетесь в соответствующей точке на левой окружности: покинув точку а , вы попадете в точку а , и т. д. В действительности две точки а  являются одной физической точкой. Значит, паттерны космического микроволнового фона вдоль этих двух окружностей должны казаться нам похожими, поскольку в действительности они представляют собой одно и то же.

 

Но довольно о бесконечном пространстве. Что можно сказать о бесконечном количестве материи? До появления теории инфляции это допущение часто оправдывалось ссылками на принцип Коперника , гласящий, что люди не занимают особенного места в космосе: если галактики есть вокруг нас, значит, галактики должны быть везде.

Что говорят об этом данные последних наблюдений? Например, насколько однородно распределение материи в больших масштабах? В модели островной вселенной , где пространство бесконечно, а вся материя заключена в конечной его области, почти все члены мультиверса I уровня были бы мертвыми, состоящими лишь из пустого пространства. В прошлом такие модели были популярны. Первоначально островом была Земля и небесные тела, видимые невооруженным глазом, а в начале XX века островом стала известная нам часть галактики Млечный Путь. Модель островной вселенной недавно была окончательно опровергнута наблюдениями. Трехмерные карты распределения галактик, о которых шла речь в предыдущей главе, показали, что впечатляюще крупномасштабные структуры (группы, скопления, сверхскопления галактик, стены) на больших масштабах уступают место унылой однородности, и никаких целостных структур размером более примерно 1 млрд световых лет не существует.

Чем крупнее структуры мы наблюдаем, тем более однородным кажется заполнение Вселенной материей (рис. 4.6 ). Если отбросить конспирологические теории, согласно которым Вселенная специально создана так, чтобы нас дурачить, наблюдения недвусмысленно говорят нам: пространство, каким мы его знаем, тянется далеко за границы нашей Вселенной и наполнено галактиками, звездами и планетами.

 

Где находятся параллельные вселенные I уровня?

Итак, если параллельные вселенные I уровня существуют, то это просто области пространства размером с нашу Вселенную, которые удалены настолько, что свет от них еще не успел достичь нас. Но если мы в центре Вселенной, означает ли это, что мы занимаем некое особое место в пространстве? Представьте себе, что вы идете по большому полю в сильном тумане, которой ограничивает видимость до 50 м, и чувствуете себя так, будто находитесь в центре туманной сферы, за пределами которой, как за краем нашей Вселенной, вам ничего не видно. Но это не означает, что вы в особенном месте, поскольку всякий, кто находится в это время на поле, ощутит себя в центре собственной туманной сферы. Точно так же любой наблюдатель, находящийся в любом месте пространства, обнаружит себя в центре своей вселенной. Кроме того, между соседними вселенными не существует физических границ, как нет особой 50-метровой границы в тумане – поле и туман имеют одинаковые свойства и там, и здесь. Более того, вселенные могут перекрываться, как и туманные сферы. Некто на поле в 30 м от вас может одновременно видеть и вас, и области, которые вам не видны. Так и обитатель галактики в 5 млрд световых лет от нас будет видеть в своей вселенной и Землю, и области космоса, лежащие вне нашей Вселенной.

Если вечная инфляция (или что-либо другое) породила бесконечное число таких параллельных вселенных, насколько далеко находится ближайшая точная копия нашей собственной? Согласно классической физике, Вселенная может быть устроена бесконечным числом способов, так что нет гарантии, что вы когда-либо найдете идентичную. С классической точки зрения, существует бесконечно много вариантов даже для расстояния между двумя частицами, так что требуется бесконечно много десятичных цифр, чтобы его задать. Однако очевидно, что существует лишь конечное число возможных вселенных, которые человеческая цивилизация смогла бы когда-либо отличить друг от друга: в наших мозгах и компьютерах можно хранить лишь конечное количество информации. Более того, мы можем выполнять измерения лишь с конечной точностью. Современный рекорд точности измерения количественной величины в физике составляет 16 десятичных цифр.

Квантовая механика ограничивает это разнообразие даже на фундаментальном уровне. В следующих двух главах мы узнаем, что квантовая механика вносит в природу внутреннюю размытость, которая лишает смысла разговоры о местоположении объектов с точностью, превосходящей определенный уровень. Вследствие этого ограничения общее число способов, которыми может быть организована наша Вселенная, становится конечным. Согласно консервативной оценке с поправкой в большую сторону, существует не более 1010118 способов, которыми может быть устроена вселенная размером с нашу. Еще более консервативное ограничение, известное как голографический принцип, предполагает, что объем размером с нашу Вселенную может быть устроен не более чем 1010124 способами. В противном случае в него пришлось бы поместить столько вещества, что образовалась бы черная дыра, превосходящая его по размерам.

Это огромные числа, больше даже знаменитого гуголплекса. Маленькие мальчики склонны зацикливаться на больших вещах, и однажды я подслушал, как сын с приятелями пытаются обставить друг друга, называя все большие числа. После триллионов, октиллионов и т. д. кто-нибудь неминуемо сбрасывает G -бомбу – гуголплекс, и на мгновение наступает благоговейная тишина. Гуголплекс – это 1, за которой следует гугол нулей, где гугол – это 1, за которой следует 100 нулей. Так что 1010100 – это не 1 с 100 нулями, а 1, за которой следует 10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 нулей. Это число настолько велико, что его в принципе нельзя записать: в нем больше цифр, чем есть атомов в нашей Вселенной. (Я всегда подозревал, что «Гугл» – амбициозная компания. Когда я побывал там на конференции, я узнал, что сотрудники называют корпоративный кампус «Гуголплексом».)

 

Рис. 6.2.  В игрушечной вселенной, где в 4 местах может находиться по одной частице двух типов, существует всего 24 возможных комбинаций (вверху слева ). Это означает, что в мультиверсе I типа, состоящем из таких вселенных, в среднем нужно проверить 16 вселенных, чтобы найти повторение одной заданной. Если наша Вселенная подобным же образом содержит 10118 частиц, которые можно скомбинировать 1010118 различными способами, придется посетить около 1010118 параллельных вселенных, прежде чем отыщется идентичная копия.

 

Хотя число 1010118 настолько велико, что его не назовешь даже астрономическим, оно ничтожно в сравнении с бесконечностью. Это означает, что если вечная инфляция породила пространство, содержащее бесконечно много параллельных вселенных I уровня, среди них найдутся все возможные варианты. В частности, вам придется проверить в среднем около 1010118 вселенных, прежде чем вы найдете копию любой вселенной (рис. 6.2 ). Так что если вы станете путешествовать по прямой линии, пока не наткнетесь на ближайшую копию нашей Вселенной, то пройденный вами путь составит примерно 1010118 диаметров Вселенной. Если же вы станете искать во всех направлениях, то расстояние до ближайшей нашей копии выразится примерно тем же числом, и это будет примерно то же самое, что 1010118 м – таково забавное математическое поведение двойных степеней (степеней в показателях степени).

Существенно ближе, на расстоянии около 101091 м, должна найтись сфера радиусом 100 световых лет, идентичная сфере с центром на Земле, где все, что мы будем воспринимать в течение ближайшего столетия, окажется идентичным тому, что воспринимают там наши двойники. Примерно в 101029 м от нас должна найтись ваша идентичная копия. На самом деле, ваши копии, по-видимому, должны быть гораздо ближе, поскольку процессы образования планет и биологической эволюции, итог которых оказался в вашу пользу, везде одинаковы. В объеме одной лишь нашей Вселенной должно быть не менее 1020 планет.

 

Мультиверс II уровня

 

Помните, я назвал теорию инфляции благодатным даром? Когда начинает казаться, что она не может предсказать что-либо более радикальное, чем уже предсказано, ей это удается. Если вам было трудно переварить огромный мультиверс I уровня, попробуйте представить себе бесконечное множество таких мультиверсов, причем в некоторых могут действовать совершенно иные законы физики. Андрей Линде, Александр Виленкин, Алан Гут и их коллеги показали, что именно это обычно предсказывает теория инфляции. (А мы будем называть это мультиверсом II уровня.)

 

Много вселенных в одном пространстве

Как вообще физика может позволять такое безумие? Вспомните (рис. 5.8 ), что инфляция умудряется породить бесконечный объем внутри конечного. На рис. 6.3 показано, что нет причин, согласно которым инфляция не могла бы осуществить это в нескольких примыкающих друг к другу объемах. В результате получилось бы несколько бесконечных областей (мультиверсов I уровня) – при условии, что инфляция вечна и никогда не заканчивается на границах между этими объемами. Это означает, что если вы живете в одном из мультиверсов I уровня, посещение соседнего невозможно: инфляция продолжает порождать разделяющее вас пространство быстрее, чем вы можете его преодолевать. Я представил, как разговариваю с детьми, расположившимися на заднем сиденье моей ракеты:

– Папа, мы уже приехали?

– Нам остался один световой год.

– Папа, мы уже приехали?

– Нам осталось два световых года.

Иными словами, хотя эти другие части мультиверса II уровня находятся в том же пространстве, что и мы, они более чем бесконечно далеки от нас в том смысле, что мы никогда их не достигнем, даже если будем вечно путешествовать со скоростью света. Напротив, сколь угодно отдаленных частей нашего мультиверса I уровня, в принципе, можно достичь, если у вас хватит терпения и если космологическое расширение замедляется.

 

Рис. 6.3.  Если вечная инфляция порождает три бесконечные области посредством механизма, изображенного на рис. 5.8, то путешествовать между ними невозможно, поскольку инфляция порождает пространство между вами и местом назначения быстрее, чем вы можете его преодолевать.

 

 

На рис. 6.3 я сделал упрощение, проигнорировав тот факт, что пространство расширяется. Вечно инфлирующие области я обозначил тонкими вертикальными полосками, разделяющими U -образные мультиверсы I уровня. В действительности они будут быстро расширяться и в конце концов инфляция в части пространства внутри них прекратится, породив дополнительные U -образные области. Так еще интереснее: мультиверс II уровня оказывается древоподобной структурой (рис. 6.4 ). Любая инфлирующая область продолжает быстро расширяться, но инфляция рано или поздно в различных ее частях заканчивается, порождая U -образные области, и каждая из них представляет собой бесконечный мультиверс I уровня. Это древо продолжает расти вечно, создавая бесконечное число таких U -образных областей, и все они вместе образуют мультиверс II уровня. Завершение инфляции превращает инфлирующую субстанцию внутри каждой области в частицы, которые затем собираются в атомы, звезды и галактики. Алан Гут любит называть мультиверсы I уровня «карманными вселенными», поскольку они аккуратно заполняют небольшие участки «кроны» древа.

 

Рис. 6.5.  Может ли пространство замерзнуть? Рыба может думать, что вода – пустое пространство, поскольку это единственная известная ей среда. Но если умная рыба выведет физические законы, управляющие молекулами воды, она поймет, что у этих уравнений есть три решения: “фазы” жидкой воды, которую она знает, а также пара и льда, которых она никогда не видела. Аналогичным образом то, что мы считаем пустым пространством, может быть средой с 10500 или большим числом фаз, из которых мы знакомы лишь с одной.

 

Многообразие

Выше я упомянул, что мультиверс II уровня может содержать бесконечные области с совершенно различными законами физики. Но это кажется абсурдным: как могут физические законы позволять существовать иным физическим законам? Ключевая идея состоит в том, что фундаментальные законы физики , которые по определению соблюдаются везде и всегда, могут порождать сложные физические состояния, в которых эффективные законы физики , воспринимаемые разумными наблюдателями, изменяются от места к месту.

Если бы вы были рыбой и провели всю жизнь в океане, у вас могла бы возникнуть ошибочная догадка о том, что вода – это пустое пространство. То, что людям кажется свойствами воды, скажем, сопротивление, которое она оказывает при плавании, вы могли бы ошибочно интерпретировать как фундаментальный закон физики: «Рыба, начавшая равномерное движение, в конце концов останавливается, если не будет взмахивать плавниками». Вы, вероятно, не догадывались бы, что вода может существовать в трех фазах – твердой, жидкой и газообразной – и что ваше «пустое пространство» просто является жидкой фазой, частным случаем решения уравнений, описывающих воду.

Этот пример может показаться глупым, и если бы настоящая рыба думала подобным образом, мы могли бы поднять ее на смех. Но не может ли быть так, что пространство, которое воспринимается людьми как пустое, также некая форма среды? Тогда будут потешаться над нами. Имеется множество свидетельств того, что так дело и обстоит. Наше «пустое пространство», по-видимому, не только является такого рода средой, но и, похоже, может находиться не в трех фазах, а в гораздо большем их числе (вероятно, около 10500), а возможно, даже в бесконечном числе. Значит, в дополнение к искривлению, растяжению и вибрации наше пространство, вероятно, способно испытывать нечто подобное замерзанию и испарению.

Как физики пришли к такому выводу? Ну, если бы наша рыба была достаточно умна, она могла бы поставить эксперимент и определить, что ее «пространство» состоит из молекул воды, подчиняющихся определенным математическим уравнениям. Изучая эти уравнения, она смогла бы определить (рис. 6.5 ), что у них есть три решения, соответствующие трем фазам – твердому льду, жидкой воде и газообразному пару, – даже несмотря на то, что она никогда не видела ни айсбергов, ни гейзеров. Точно так же физики ищут уравнения, описывающие пространство и его наполнение. Мы еще не нашли окончательный ответ, но приближения, которые у нас есть, как правило, обладают общим свойством – у них более одного решения (фазы) для описания однородного пространства. Авторы теории струн, теории-фаворита, обнаружили, что существует около 10500 или более решений, и нет признаков того, что конкурирующие теории, например петлевая квантовая гравитация, дают единственное решение. Физики называют совокупность всех возможных решений ландшафтом теории. Однако этот пессимистичный вывод основан на довольно сомнительном допущении, что способ протекания инфляции в нашей области пространства – это единственный способ ее протекания где бы то ни было. Все эти решения, свойствами которых определяются эффективные законы физики, связаны с различными возможностями, вытекающими из одних и тех же фундаментальных законов.

Что это означает в отношении к инфляции? Поразительным образом вечная инфляция порождает все возможные типы пространства. Она реализует весь ландшафт. Фактически для каждой фазы, в которой может находиться пространство, она создает бесконечно много мультиверсов I уровня, заполненных этой фазой. Это означает, что мы, наблюдатели, можем легко совершить ту же ошибку, что и рыба: поскольку мы наблюдаем пространство, имеющее одни и те же свойства всюду в нашей Вселенной, мы склонны ошибочно полагать, что оно таково же во всех остальных местах.

Какое отношение все это имеет к инфляции? Для изменения фазового состояния пространства требуется огромное количество энергии, так что наблюдаемые нами повседневные процессы просто не способны это сделать. Однако в прошлом, в процессе инфляции, в каждом крошечном объеме было заключено колоссальное количество энергии. Его было достаточно для того, чтобы квантовые флуктуации могли случайно вызывать изменение фазового состояния в какой-либо небольшой области, которая потом за счет инфляции превращалась бы в колоссальный объем, содержащий лишь эту фазу. Более того, данная область пространства должна была перейти в определенную фазу, чтобы инфляция остановилась. Это гарантирует, что пограничные области между двумя фазами будут инфлировать вечно, в то время как каждая фаза целиком заполняет бесконечный мультиверс I уровня.

Что представляют собой фазовые состояния пространства? Представьте, что на день рождения вы получили в подарок автомобиль с ключом в зажигании, но прежде никогда не слышали об автомобилях и не располагаете совершенно никакой информацией о том, как они работают. Будучи любопытным человеком, вы забираетесь внутрь и начинаете давить на все кнопки и тянуть за все рычаги. В конце концов вы понимаете, как им пользоваться, и становитесь очень хорошим водителем. Но кто-то без вашего ведома стер с рычага переключения скоростей букву R и испортил коробку передач так, что для переключения на задний ход требуется огромное усилие. Это значит, что пока кто-нибудь не подскажет, вы, возможно, не догадаетесь, что автомобиль способен двигаться задним ходом. Если попросить вас описать, как работает автомобиль, вы скорее всего будете ошибочно утверждать, что, во всех случаях, чем сильнее нажимаешь на педаль газа при работающем двигателе, тем быстрее автомобиль едет вперед. Если в параллельной вселенной для переключения на движение вперед, напротив, требуется огромное усилие, то там вы, вероятно, придете к выводу, что машина работает иначе и движется только назад.

 

Рис. 6.6.  Ткань пространства и времени, по-видимому, имеет многочисленные “рукоятки”, которые могут быть установлены в различные положения в разных частях мультиверса II уровня. Наша собственная Вселенная, похоже, имеет 32 “рукоятки”, положение которых можно менять (гл. 10 ), а также дополнительные – с дискретным набором положений, управляющие типами частиц, которые могут существовать.

 

Наша Вселенная очень похожа на автомобиль. Как показано на рис. 6.6, есть множество «рукояток», которые управляют ее работой: законы, согласно которым движутся предметы при воздействии на них, и т. д. – именно это в школе называли законами физики, прибавляя фундаментальные постоянные . Каждое положение «рукояток» соответствует одному из фазовых состояний пространства, так что если имеется 500 «рукояток» с 10 положениями для каждой, то должно быть 10500 фаз.

В старших классах меня учили – неправильно, – что эти законы и значения постоянных всегда верны и не меняются от места к месту, от мгновения к мгновению. Почему это ошибка? Потому что для изменения положения этих переключателей, как в случае рычага переключения передач в автомобиле, требуется огромное количество энергии – гораздо больше, чем у нас в распоряжении, – и поэтому мы не понимали, что эти параметры можно менять. Мы даже не понимали, что вообще существуют параметры, которые можно изменять: в отличие от коробки передач, природные «рукоятки» надежно спрятаны. Они проявляются в форме особых полей с очень массивными частицами-переносчиками и других малопонятных сущностей, а огромная энергия нужна не только для их изменения, но даже для обнаружения того, что они существуют.

Как физики догадались, что «рукоятки» могут существовать и что мы могли бы заставить нашу Вселенную функционировать иначе, если бы располагали достаточной энергией? Точно так же, как вы смогли бы догадаться, что автомобиль в принципе может двигаться задним ходом: путем внимательного изучения работы его частей! Вы могли бы догадаться об этом, изучив устройство коробки передач. Вот и изучение мельчайших «строительных блоков» природы подсказало, что при наличии достаточной энергии они могут реорганизоваться так, что наша Вселенная станет работать по-другому. Мы рассмотрим их функционирование в следующей главе. Вечная инфляция обеспечивала бы достаточное количество энергии для квантовых флуктуаций, чтобы породить все возможные комбинации в мультиверсах I уровня. Она действует как невероятно сильная горилла, которая беспорядочно крутит все рукоятки в автомобилях на заполненной парковке: когда она закончит свое дело, у некоторых машин окажется включенным задний ход.

 

Табл. 6.1.  Ключевые мультиверсные понятия и их взаимосвязи.

 

Короче говоря, мультиверс II уровня принципиально меняет наши представления о физических законах. Многие закономерности, которые мы привыкли считать фундаментальными, по определению соблюдающимися всегда и везде, оказались не более чем эффективными законами – локальными нормативными актами, которые могут меняться от места к месту соответственно разным установкам рукояток, задающих различные фазовые состояния пространства. В табл. 6.1 перечисляются эти понятия и поясняется, как они связаны с параллельными вселенными. Эти изменения продолжают давнюю тенденцию. Если Коперник считал фундаментальным закон, гласящий, что планеты движутся по идеальным окружностям, то теперь мы знаем о существовании орбит более общего вида, степень отличия которых от окружности (эксцентриситет) – это, по сути, «рукоятка», которая после завершения формирования Солнечной системы может менять свое положение лишь очень медленно, с большим трудом. Мультиверс II уровня выводит это представление на новую высоту, понижая в ранге многие физические законы с фундаментальных до эффективных. Этим вопросом мы сейчас займемся.

 

Точная настройка как аргумент в пользу мультиверса II уровня

Так существует ли на самом деле мультиверс II уровня? Аргументы в пользу вечной инфляции (их множество) являются также аргументами в пользу мультиверса II уровня, поскольку из первого вытекает второе. Мы также видели, что если существуют природные законы или постоянные, которые в принципе могут меняться от места к месту, то вечная инфляция обусловит их варьирование внутри мультиверса II уровня. Но существуют ли подтверждения, не завязанные столь сильно на теоретические аргументы?

Я хочу привести довод в пользу того, что они есть: это тот факт, что наша Вселенная кажется очень точно настроенной для жизни. Оказывается, многие из «рукояток», похоже, настроены на весьма специфические значения, и если бы мы могли чуть-чуть их повернуть, жизнь, какой мы ее знаем, стала бы невозможной. Троньте «рукоятку» темной энергии, и галактики никогда не образуются, немного покрутите другую – и атомы станут неустойчивыми, и т. д. Имея недостаточный опыт пилотирования, я всегда боюсь запутаться в рукоятках в кабине самолета, но если бы я мог случайно покрутить «рукоятки» нашей Вселенной, мои шансы на выживание были бы еще ниже.

Вот три основных реакции на наблюдаемую точную настройку:

 

1. Случайность . Это просто счастливое совпадение, и ничего больше.

2. Замысел . Это свидетельство того, что наша Вселенная была сконструирована некой сущностью (возможно, божеством или высокоразвитой формой жизни, моделирующей вселенные), и «рукоятки» настроены так, чтобы сделать возможной жизнь.

3. Мультиверс . Это свидетельство мультиверса II уровня, поскольку, если все положения «рукояток» где-то реализуются, то естественно, что мы существуем и наблюдаем себя в пригодной для жизни области.

 

Ниже мы рассмотрим интерпретации случайности и мультиверса, а вариант моделирования отложим до гл. 12. Но сначала разберемся со свидетельствами точной настройки.

 

Точно настроенная темная энергия

До сих пор наша космическая история была своего рода гравитационным перетягиванием каната между темной материей, которая пытается все стянуть, и темной энергией, которая стремится все разбросать (гл. 4 ). Поскольку образование галактик связано со сгущением вещества, я думаю, что темная материя – наш друг, а темная энергия – враг. Плотность вещества в космосе в основном обеспечивается темной материей. Ее дружественное гравитационное притяжение помогает формироваться галактикам, как наша. Однако, поскольку космологическое расширение приводит к разрежению темной материи, но не темной энергии, нежелательное гравитационное отталкивание темной энергии в конце концов берет верх, отменяя дальнейшее образование галактик. Это значит, что если бы темная энергия имела значительно большую плотность, она стала бы брать верх гораздо раньше, еще до того, как сформировались бы первые галактики. Результатом явилась бы мертворожденная вселенная, вечно темная и безжизненная, не содержащая ничего сложнее и интереснее почти однородного газа. Если, с другой стороны, плотность темной энергии уменьшилась бы настолько, чтобы стать существенно отрицательной (это допускает эйнштейновская теория гравитации), наша Вселенная прекратила бы расширяться и коллапсировала в Большом хлопке, прежде чем успела бы появиться жизнь. Если вы задумались, как изменить плотность темной энергии, повернув соответствующую «рукоятку» на рис. 6.6, то, пожалуйста, не крутите ее слишком сильно, поскольку для жизни это может иметь такие же печальные последствия, как нажатие кнопки «Выкл.».

Насколько сильно можно повернуть «рукоятку» темной энергии? Текущее ее положение соответствует плотности темной энергии, которую мы измерили на практике, и она составляет около 10–27 кг/м3, что удивительно близко к нулю в сравнении со всем доступным диапазоном. Естественное максимальное значение этого регулятора соответствует плотности темной энергии около 1097 кг/м3, при которой квантовые флуктуации заполняют пространство крошечными черными дырами, а минимальное значение равно той же величине, но со знаком минус. Если полный оборот «рукоятки» темной энергии на рис. 6.6 соответствует изменению плотности на всю величину этого диапазона, то фактическое положение «рукоятки» в нашей Вселенной отстоит от средней точки примерно на 10–123 полного оборота. Это значит, что если вы хотите повернуть «рукоятку» так, чтобы могли образовываться галактики, нужно задать угол поворота с точностью более 120 цифр после запятой! Хотя это кажется невыполнимо точной настройкой, некий механизм, очевидно, оказал эту услугу нашей Вселенной.

 

Точно настроенные частицы

В следующей главе мы исследуем микромир элементарных частиц. В нем множество «рукояток», определяющих массы частиц, а также то, насколько сильно они взаимодействуют друг с другом.

Научное сообщество постепенно начинает понимать, что точно настроены многие из этих регуляторов. Так, если электромагнитные силы ослабли бы примерно на 4 %, Солнце немедленно взорвалось бы: атомы его водорода стали бы соединяться в дипротоны (не существующую без такой поправки разновидность гелия, не содержащего нейтронов).

Если существенно усилить электромагнетизм, то стабильные атомы, например углерод и кислород, будут испытывать радиоактивный распад.

Если бы слабое ядерное взаимодействие оказалось существенно слабее, то вокруг нас не было бы водорода, поскольку вскоре после Большого взрыва весь он превратился бы в гелий. В обоих случаях – если бы взаимодействие было бы гораздо сильнее или слабее – нейтрино при взрыве сверхновой не могли бы рассеять в космосе внешние слои звезды, и необходимые для жизни тяжелые элементы вроде железа вряд ли смогли бы покинуть звезды, где они образуются, и оказаться в составе планет, например Земли.

Если бы электроны были гораздо легче, то не было бы стабильных звезд, а если значительно тяжелее, то не могли бы существовать упорядоченные структуры, например кристаллы или молекулы ДНК. Если бы протоны оказались на 0,2 % тяжелее, они превращались бы в нейтроны, неспособные удерживать возле себя электроны, – и не было бы атомов. Напротив, если бы протоны были существенно легче, то нейтроны внутри атомов превращались бы в протоны, так что не было бы устойчивых атомов, кроме водорода. На самом деле масса протона зависит от другого регулятора, который имеет очень широкий диапазон варьирования и нуждается в точной настройке до 33 цифры после запятой, чтобы могли существовать стабильные атомы, кроме водорода.

 

Точная настройка в космологии

Многие из примеров точной настройки были найдены в 70–80-х годах Полом Дэвисом, Брэндоном Картером, Бернардом Карром, Мартином Рисом, Джоном Барроу, Франком Типлером, Стивеном Вайнбергом и другими физиками. Новые примеры продолжают появляться. Свою первую вылазку в эту область я предпринял в компании с Мартином Рисом, седым астрономом с безупречными британскими манерами, который стал одним из моих научных героев. Я не видел никого, кто бывал так счастлив, выступая с докладом – его глаза словно бы лучились. Он первым в научном истеблишменте поддержал меня в том, чтобы, следуя зову сердца, обратиться к «неортодоксальным» идеям. В предыдущей главе мы узнали, что амплитуда первичных космологических флуктуаций составляла около 0,002 %. Мы с Мартином подсчитали, что если бы они были меньше, то галактики не образовались бы, а если больше, то это привело бы к частому падению астероидов и прочим неприятностям.

 

А как насчет случайности?

Но что нам дает эта точная настройка? Прежде всего: почему мы не можем просто списать все на цепочку счастливых совпадений?

Научный метод не терпит необъяснимых совпадений. Сказать, что моя теория требует необъяснимого совпадения для согласования с наблюдениями , все равно что сказать: «Моя теория неверна». Мы видели, например, как теория инфляции предсказывает, что пространство плоское, а пятна космического микроволнового фона должны иметь средний размер около 1°, и что эксперименты, описанные в гл. 4, подтвердили это. Допустим, команда «Планка» обнаружила бы значительно меньший средний размер пятен, который заставил бы их объявить, что эти данные исключают теорию инфляции с уверенностью 99,999 %. Это значило бы, что случайные флуктуации в плоской Вселенной могли бы, в принципе, заставить пятна выглядеть при измерениях необычно малыми, приводя к некорректным выводам, но с вероятностью 99,999 % этого не случилось бы. Иными словами, инфляция потребовала бы необъяснимого совпадения с шансами 1: 100 000, чтобы оказаться в согласии с наблюдениями. Если бы Алан Гут и Андрей Линде провели после этого совместную пресс-конференцию и настаивали на том, что нет аргументов против теории инфляции, поскольку они нутром чуют – измерения «Планка» были просто совпадением, – такую позицию следовало бы отвергнуть как ненаучную.

Случайные флуктуации подтверждают, что в науке нельзя быть стопроцентно уверенным в чем-либо. Всегда есть вероятность того, что вам чрезвычайно не повезло со случайным измерительным шумом, что детектор сломался или даже что весь эксперимент был всего лишь галлюцинацией. На практике, однако, опровержение с надежностью 99,999 % обычно рассматривается научным сообществом как последний гвоздь в крышку гроба теории. Что касается теории о том, что точная настройка темной энергии – это случайность, то она требует веры в гораздо более невероятное совпадение, а значит, исключается с вероятностью примерно 99,999999… %, где после запятой около 120 девяток.

 

Слово на букву «А»

А что можно сказать про объяснение точной настройки через мультиверс II уровня? Теория, в которой все регуляторы природы принимают в тех или иных местах фактически все возможные значения, со стопроцентной надежностью предсказывает, что существует пригодная для жизни вселенная, такая как наша. И, поскольку мы можем жить лишь в пригодной для обитания вселенной, мы не должны удивляться, что наблюдаем именно такую.

Хотя это логичное объяснение, оно весьма спорно. После всех известных истории наивных попыток сохранить Землю в качестве центра Вселенной, в сознании людей глубоко укоренилась противоположная точка зрения. Принцип Коперника гласит, что в нашем положении в пространстве и времени нет ничего особенного. Брэндон Картер предложил конкурирующую идею, которую назвал слабым антропным принципом : «Мы должны быть готовы принять во внимание тот факт, что наше местоположение в этой Вселенной с необходимостью является привилегированным в достаточной мере, чтобы быть совместимым с нашим существованием как наблюдателей». Некоторые мои коллеги считают, что Картер сделал предосудительный шаг назад, к геоцентризму. С принятием во внимание точной настройки картина мультиверса II уровня действительно полностью нарушает принцип Коперника. Как показано на рис. 6.7, подавляющее большинство вселенных мертво, а наша собственная в высшей степени необычна – она содержит гораздо меньше темной материи, чем большинство, а также имеет очень странные установки многих других «рукояток».

Объяснение наблюдений путем введения параллельных вселенных, которые мы не можем наблюдать, кажется некоторым моим коллегам ошибочным. Я помню доклад, сделанный в 1998 году в Фермилабе, месторасположении знаменитого ускорителя в окрестностях Чикаго. Аудитория взорвалась, когда докладчик произнес «слово на букву „А“» – антропный . На самом деле, чтобы усыпить бдительность рецензента и добиться публикации, мы с Мартином Рисом решили просто не использовать это слово в аннотациях первых совместно написанных статей по антропной тематике…

 

Рис. 6.7.  Если плотность темной энергии (представлена здесь градациями серого) изменяется от вселенной к вселенной, то галактики, планеты и жизнь будут появляться только в тех вселенных, где она наименьшая. На этом рисунке обитаемы 20 % наиболее светлых вселенных, но реальная их доля может оказаться ближе к 10–120.

 

Лично у меня картеровский антропный принцип вызывает единственное возражение: мне не нравится использование слова «принцип», которое несет оттенок факультативности. Ведь применение строгой логики при сопоставлении теории с наблюдениями не является факультативным. Если большая часть пространства непригодна для жизни, то совершенно ясно, что мы должны обнаружить себя в таком месте, которое является особенным в том смысле, что оно пригодно для обитания. На самом деле большая часть пространства кажется совершенно непригодной для жизни, даже если ограничиться нашей собственной Вселенной: попробуйте выжить в межгалактической пустоте или внутри звезды! Достаточно сказать, что лишь одна тысячная триллионной триллионной триллионной доли нашей Вселенной лежит в пределах 1 км от поверхности какой-либо планеты, так что это очень специфическое место. Но то, что мы в него попали, вряд ли удивительно.

В качестве примера рассмотрим M , массу нашего Солнца. От величины M зависит светимость Солнца, и, опираясь на элементарную физику, можно вычислить, что жизнь, какой мы ее знаем, возможна, лишь если M лежит в узком диапазоне между 1,6 × 1030 и 2,4 × 1030 кг. В ином случае климат Земли был бы холоднее, чем на Марсе, или жарче, чем на Венере. Измеренное значение M ≈ 2,0 × 1030 кг. Это кажущееся необъяснимым совпадение пригодного для жизни и наблюдаемого значений M может вызвать беспокойство, если принять во внимание то, что по расчетам звезды могут существовать в гораздо более широком диапазоне возможных масс – от 1029 до 1032 кг, так что масса Солнца кажется точно подобранной для жизни. Однако это видимое совпадение можно объяснить, поскольку существует ансамбль из большого числа таких систем с различными настройками «рукояток». Мы знаем, что есть множество планетных систем с центральными звездами и планетными орбитами разных размеров, и, очевидно, следовало ожидать, что мы появимся в одной из пригодных для обитания планетных систем.

Интересный момент: мы могли использовать факт точной настройки Солнечной системы как аргумент в пользу существования других планетных систем даже до того, как они были открыты. Опираясь на точно такую же логику, мы можем использовать наблюдаемую точную настройку нашей Вселенной как аргумент в пользу существования других вселенных. Единственное отличие состоит в том, являются или нет предсказываемые сущности наблюдаемыми, но это различие не ослабляет аргумент, поскольку никак не касается его внутренней логики.

 

На какие предсказания мы можем надеяться?

Физики любят измерять численные значения. Вот некоторые:

 

 

Нам также нравится предсказывать такие числа, исходя из фундаментальных принципов. Но достигнем ли мы когда-нибудь успеха? Иоганн Кеплер до открытия эллиптической формы планетных орбит выдвинул элегантную теорию, связанную с третьим из чисел в приведенной таблице. Он предположил, что орбиты Меркурия, Венеры, Земли, Марса, Юпитера и Сатурна находятся друг с другом точно в тех же соотношениях, как и вложенные друг в друга шесть сфер, между которыми вписаны соответственно октаэдр, икосаэдр, додекаэдр, тетраэдр и куб (рис. 7.2 ). Если закрыть глаза на тот факт, что эта теория вскоре была опровергнута на основании более точных измерений, она кажется в целом наивной. Сейчас мы знаем о существовании других планетных систем, и параметры орбит, измеренные в Солнечной системе, не дают фундаментальной информации о Вселенной и касаются лишь нашего положения в ней. В этом смысле мы можем считать цифры частью своего космического «почтового индекса». Чтобы объяснить внеземному почтальону, в какую из планетных систем мы хотим отправить посылку, можно сказать, чтобы он летел в ту из них, где имеется восемь планет, орбиты которых в 1,84, 2,51, 4,33, 12,7, 24,7, 51,1 и 76,5 раз больше восьмой, самой маленькой орбиты, и тогда он может воскликнуть: «О, я знаю, какую планетную систему вы имеете в виду!» Ровно по той же причине у нас не будет шансов предсказать массу или радиус Земли на основе фундаментальных принципов, поскольку мы знаем, что существует много планет разных размеров.

А что можно сказать о массе и величине орбиты электрона? Эти числа одинаковы для всех проверенных электронов во Вселенной, поэтому появилась надежда, что они могут быть поистине фундаментальными свойствами нашего физического мира, которые мы однажды сможем вычислить на основе одной только теории – совершенно в духе кеплеровской модели орбит. И действительно, в 1997 году знаменитый струнный теоретик Эд Виттен сказал мне, что, по его мнению, теория струн рано или поздно сможет предсказать, во сколько раз электрон легче протона. Однако когда мы виделись с ним в последний раз, на шестидесятилетии Андрея Линде, за очередным бокалом вина он признался, что оставил надежду предсказать все фундаментальные постоянные.

Откуда этот пессимизм? Дело в том, что история повторяется. Мультиверс II уровня делает с массой электрона то же, что другие планеты сделали с массой Земли, превратив ее из фундаментального свойства природы лишь в часть нашего космического адреса. Измерить значение любого параметра, который варьирует внутри мультиверса II уровня – значит просто сузить список вселенных, в которых мы можем находиться.

 

Рис. 6.8.  Массы девяти частиц-фермионов, которые нам удалось измерить, кажутся совершенно случайными, как и предсказывают некоторые модели мультиверса. Они утверждают, что мы, исходя из фундаментальных принципов, никогда не сможем их предсказать. На шкале показано, во сколько раз каждая частица тяжелее электрона.

 

Сейчас известно 32 независимых параметра нашей Вселенной, для которых мы пытаемся измерить как можно больше знаков после запятой (гл. 10 ). Все ли они варьируют по мультиверсу II уровня, или некоторые из них могут быть вычислены на основе фундаментальных принципов (или иного, более короткого, списка параметров)? У нас пока нет успешной фундаментальной физической теории, которая смогла бы ответить на этот вопрос, и интересно присмотреться к результатам измерений в поисках подсказок. Параметры, которые варьируют по мультиверсу, должны казаться случайными, если мы живем в случайно выбранной вселенной. Кажутся ли измеренные значения случайными? Вы сами можете оценить это. Взгляните на рис. 6.8, где я изобразил массы девяти фундаментальных частиц, называемых фермионами. Если отвлечься от шкалы, на которой масса увеличивается в 10 раз на каждые несколько сантиметров, рисунок напоминает мне девять случайно воткнувшихся в мишень дротиков. Действительно, эти девять чисел успешно проходят строгий статистический тест на случайность, удовлетворяя равномерному распределению с наклоном линии регрессии менее 10 %.

 

Не все потеряно

Если мы живем в случайно пригодной для жизни вселенной, то числа должны казаться случайными, однако подчиняться распределению вероятностей, которое благоприятствует жизни. Сравнивая предсказания того, как параметры варьируют по мультиверсу с соответствующей физикой формирования галактик и т. д., мы можем сделать статистические предсказания о том, что должно фактически наблюдаться. До сих пор такие предсказания великолепно согласовывались с данными о темной энергии, темной материи и нейтрино (рис. 6.9 ). На самом деле, первое предсказание ненулевого значения плотности темной энергии, сделанное Стивеном Вайнбергом, было получено как раз таким образом.

 

Рис. 6.9.  Если плотность темной энергии, темной материи и нейтрино очень сильно варьирует по мультиверсу II уровня, то большинство вселенных будет лишено галактик и безжизненно, а случайный наблюдатель должен ожидать, что измеренные им значения лежат в очень узком численном диапазоне, соответствующем показанным распределениям вероятности. Нам следует ожидать, что измеренные значения окажутся в центральных серых интервалах, на которые приходится 90 % вероятности, и они действительно туда укладываются.

 

Я получил большое удовольствие, проходя по списку «рукояток» и разбираясь, что случится, если их повернуть. Например, ни в коем случае не трогайте на рис. 6.6 «рукоятки», задающие число измерений пространства и времени: это приведет к фатальным последствиям. Если установить число измерений пространства более трех, не будет существовать ни стабильных планетных систем, ни устойчивых атомов. Скажем, переход в четырехмерное пространство изменяет ньютоновский закон обратных квадратов для силы гравитации на закон обратных кубов, при котором вообще не существует устойчивых орбит. Я был очень горд этой своей догадкой, пока не узнал, что австрийский физик Пауль Эренфест пришел к этому выводу еще в 1917 году. Пространства с числом измерений менее трех тоже не позволяют существовать планетным системам, поскольку гравитация в них перестает притягивать. Кроме того, они, по-видимому, еще и по иным причинам слишком просты, чтобы содержать наблюдателей – например, в них отростки двух нейронов не могут пересекаться, не нарушая взаимную целостность. Изменение числа измерений времени не так абсурдно, как можно подумать, и общая теория относительности Эйнштейна отлично с этим справляется. Однако я однажды написал статью, в которой показал, что это уничтожило бы ключевое математическое свойство физики, которое позволяет нам делать предсказания, а значит, бесполезным стало бы развитие мозга. Три измерения пространства и одно измерение времени (рис. 6.10 ) – вот единственное пригодное для жизни сочетание. Иными словами, бесконечно умный ребенок, не делая вообще никаких наблюдений, мог бы вычислить, исходя из первичных принципов, что в мультиверсе II уровня существуют другие комбинации размерности пространства и времени, но лишь вариант 3 + 1 пригоден для жизни. Перефразируя Декарта, он мог бы, еще не открыв в первый раз глаза, подумать: «Я мыслю, следовательно, у пространства три измерения, а у времени – одно», и проверить свое предсказание.

 

Рис. 6.10.  При более чем трех измерениях пространства не существует стабильных атомов и планетных систем. При меньшем числе измерений не существует гравитационного притяжения. При размерности времени больше или меньше единицы физика утрачивает свою предсказательную силу, а значит, не будет смысла в развитии мозга. В мультиверсе II уровня, где число измерений пространства и времени изменяется от одной вселенной к другой, мы должны, таким образом, ожидать, что окажемся во вселенной с тремя измерениями пространства и одним – времени, поскольку все остальные вселенные, вероятно, необитаемы.

 

Если весь мультиверс II уровня существует в одном пространстве, то как внутри него может варьировать размерность? Дело в том, что, согласно наиболее популярным моделям теории струн, изменяется лишь кажущаяся размерность: истинное пространство всегда имеет 9 измерений, но мы не замечаем 6 из них, поскольку они микроскопически свернуты наподобие цилиндра на рис. 2.7. Если пройти небольшое расстояние вдоль одного из 6 скрытых измерений, окажешься на том же месте, откуда отправился. Предполагается, что все 9 измерений первоначально были свернуты, а затем в нашей области космоса инфляция растянула три из них до астрономических размеров, оставив остальные крошечными, невидимыми. В других местах мультиверса II уровня инфляция породила миры с числом измерений от 0 до 9.

Математики нашли множество способов, как эти дополнительные размерности могут быть свернуты и наполнены энергией (скрытые измерения, например, могут быть окружены внутри обобщенным магнитным полем). Все эти варианты соответствуют в теории струн регулировочным «рукояткам». Различные варианты могут относиться не только к физическим постоянным в несвернутых измерениях, но и к правилам, определяющим, какие элементарные частицы могут существовать и какие эффективные уравнения их описывают. Могут иметься параллельные вселенные II уровня, в которых, например, 10, а не 6 типов кварков.

Короче говоря, хотя фундаментальные уравнения физики (возможно, составляющие теорию струн) остаются верны во всем мультиверсе II уровня, видимые законы физики, которые будут открывать наблюдатели, изменяются от одного мультиверса I уровня к другому. Видимые законы не являются универсальными не только в словарном смысле, то есть «всегда применимыми», но и в буквальном смысле, то есть «применимыми к нашему Универсуму (Вселенной)». Они мультиверсальны лишь на I, но не на II уровне. Фундаментальные же уравнения мультиверсальны даже на II уровне – они не будут меняться, пока мы не доберемся до мультиверса IV уровня (гл. 12 ).

 


Дата добавления: 2019-02-12; просмотров: 211; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!