Биография в десять миллиардов лет 7 страница



Масса этих свежесозданных радиоактивных изотопов, которым от роду было всего-то миллион лет, наряду с другими, более мирными элементами вброшенная в нашу формирующуюся систему взрывной волной от сверхновой, составляет примерно 0,01 % нынешней массы Солнца. Казалось бы, немного, однако на самом деле это примерно в 33 раза больше массы Земли – и все это вещество было распылено среди материала, формировавшего протопланетный диск юной Солнечной системы. Вместе эти элементы могли обеспечить жидкое расплавленное ядро любому каменному телу, диаметр которого составляет больше 30 километров.

Прошло около трех миллионов лет, и жар от радиоизотопов рассеялся, а тела начали остывать и заново кристаллизоваться с поверхности к ядру, причем крупные тела планетных размеров остывали медленнее всего. Поэтому представляется, что все улики налицо: перед нами планета, основы геофизики которой заложены струйкой радиоактивных элементов, причем ее соседки-планеты зародились при тех же обстоятельствах. Удивительная ниточка, связывающая нас с прошлым!

Но что же сталось с нашей семейкой тлеющих звезд, с нестабильными сестрами Солнца, определившими нашу радиологическую историю? Что происходит с явлениями вроде Тройной туманности с течением миллионов, миллиардов лет? Прямые свидетельства того, что когда-то существовал целый выводок звезд, а рядом взорвалась сверхновая, давно исчезли. Разумеется, может статься, что за последовавшие миллионы и миллиарды лет звездные сестрички попросту разбрелись, уплыли по огромным орбитам, тянущимся через всю Галактику, разбежались в разные стороны под воздействием вездесущих гравитационных полей. Однако может быть и другое – наше «гнездышко» существует до сих пор в виде огромного скопления звезд, от которого мы попросту отстали.

Астрономы давно ищут этот звездный «потерянный Рай»[75] – звездные скопления в Галактике, химический состав и возраст звезд в которых напоминают Солнце. Это труднейшая задача. Нам сложно даже понять, какие звезды когда-то могли находиться в нашей области Галактики, поскольку измерять такие огромные расстояния и рассчитывать движение конкретных звезд мы можем лишь с ограниченной точностью, к тому же рассмотреть нужно колоссальное множество объектов.

Один из кандидатов – так называемый объект Мессье 67[76], скопление звезд и звездных остатков примерно в 2700 световых лет от нас. Скопление содержит более 100 звезд, поразительно похожих на наше Солнце. Правда, есть одно осложнение: проделанное недавно компьютерное моделирование[77] движения звезд в скоплении Мессье 67 позволило исследовать путь, который проделала бы Солнечная система, если бы отправной точкой – и местом ее рождения – было это скопление, и траектория оказалась сомнительной. Получилось, что для обеспечения гравитационного «трамплина», который вышвырнул бы нас на наше нынешнее место, потребовалось бы очень редкое относительное положение не менее двух-трех массивных звезд в Мессье 67. Причем по пути гравитационные приливы и отливы, скорее всего, разодрали бы нашу родную планетную систему в клочки.

Однако само по себе это заключение основано на допущении о том, какую конфигурацию имели тогда огромные спиральные «руки» Млечного Пути, состоящие из множества звездных объектов. А если они за миллиарды лет изменились сильнее, чем мы думаем, возможно, скопление Мессье 67 отпустило нас не так резко, и наше происхождение оттуда становится более вероятным.

Так что вопрос о том, где именно зародилась наша Солнечная система, пока открыт, однако радиоизотопные свидетельства и ход событий в других туманностях практически не оставляют сомнений, что мы так или иначе осиротели. Что возвращает нас к дальнейшему рассказу о том, что происходило в процессе формирования Солнечной системы.

 

* * *

 

Понадобилось всего несколько миллионов лет агломерации и столкновений, чтобы в огромном диске из газа и пыли вокруг прото-Солнца сформировалось множество крупных объектов. На периферии, где прохладнее, дальше тех мест, где в дальнейшем лягут орбиты пояса астероидов, замерзшая вода стабильна и создает дополнительный объем твердого материала, который в сочетании с камнем составляет гигантские ледяные ядра планет. Эти массивные сферы больше Земли в 10–15 раз, и их мощная гравитация всасывает окружающий газ, отчего возникает толстый покров атмосферы.

Как я уже упоминал, одно из этих тел – планета Юпитер, окутанная огромным одеялом материи. В основном это древние водород и гелий, которых набирается более чем в 300 раз больше массы Земли. Одного веса этого вещества достаточно, чтобы внутренность планеты подвергалась колоссальному давлению. Даже водород принимает непривычные нам формы – например, состояние жидкого металла[78]. Так что молодая планета-газовый гигант может испускать тепловую энергию, вырабатываемую подобным давлением, и без подогрева радиоизотопами. Даже сегодня, четыре с половиной миллиарда лет спустя, Юпитер все еще пышет первобытным жаром – и температура в его ядре по-прежнему близка к 30 000 °С.

Ближе к центру нарождающейся Солнечной системы – туда, где будут планеты от Меркурия до Марса и пояс астероидов – вращаются десятки и сотни каменистых тел, так называемые планетные зародыши, выжившие в естественном отборе столкновений и слияний планетезималей. Каждый из них обладает массой всего в несколько процентов земной, и каждый в последние несколько десятков лет вел довольно-таки бурную жизнь. Расти они больше особенно не будут, но спорадически станут сталкиваться и сплавляться, поскольку энергия мощных столкновений переплавляет и переформирует минералы, их составляющие. Со временем несколько из них вырвутся вперед и превратятся во внутренние планеты.

За пограничной орбитой Марса вращается множество зародышей, однако эта область неблагоприятна для создания планет. Гравитационные поля Юпитера и Сатурна покрывают эту зону таким образом, что мелкие объекты получают ускорение и их столкновения приводят не к созиданию, а к разрушению. Гравитация способна даже вытолкнуть астероиды на другие орбиты. Одни планетные зародыши летят к центру и так или иначе примыкают к внутренним планетам. Другие находят себе место во внешней части системы.

 

Рис. 7. Сравнительные размеры Земли и Юпитера.

Громовержец обладает массой в 317 раз больше земной и принадлежит к совершенно иному классу планет.

 

Хотя нам известны не все подробности, тем не менее мы знаем о многих важных событиях, которые происходят в следующие несколько десятков миллионов лет эволюции системы: у планет наблюдается так называемая орбитальная миграция – вскоре мы еще вернемся к этому феномену, поскольку без него невозможно разобраться ни в древней истории, ни в отдаленном будущем, – а кроме того, они иногда сталкиваются с другими небесными телами. По всей вероятности, примерно 4,53 миллиарда лет назад и Земля тоже столкнулась с крупным планетным зародышем, что привело к образованию Луны. Более того, несколько позже наша планета оказалась под настоящим дождем астероидных ударов. В результате этой бомбардировки на юную поверхность планеты попало много драгоценной субстанции, которую мы называем водой, – Земля только-только успела остыть до такой степени, чтобы сохранить столь летучее вещество. А кроме того, Земля приобрела смесь самых разнообразных химических соединений, которая составила внешний покров планеты, причем эти соединения зачастую бывали еще и переработаны в верхних слоях расплавленного ядра Земли, но все равно сыграли важнейшую роль в запуске химических механизмов атмосферы, океанов и суши.

На других планетах все шло иначе. Венера, похоже, сохранила первичный внешний каменистый слой. В отличие от Земли, этот субстрат не был содран в результате столкновения с астероидом, которое породило Луну. Некоторые теории предполагают также, что Венера сформировалась при практически лобовом столкновении двух огромных планетных зародышей – это объяснило бы необычное вращение с востока на запад, при котором Венера совершает оборот вокруг своей оси медленнее, чем оборот вокруг Солнца.

Марс меньше по размерам – его масса составляет всего одну десятую массы современной Земли – и несколько иначе устроен. Пропорция летучих веществ в марсианских скалах оказалась больше. Однако и ему довелось пережить столкновения с огромными планетными зародышами. Именно это, вероятно, вызвало такую странную географию планеты – север и юг Марса разительно различаются: северная треть покрыта тонкой корой, и на ней раскинулись гладкие равнины, а почти на всем южном полушарии кора толще, и там господствуют скалистые плоскогорья.

Интересно, что в те далекие времена – 4 миллиарда лет назад – климат на Марсе и Венере, вероятно, был гораздо мягче и больше похож на земной[79]. Теперь, конечно, все совсем не так: Венера обзавелась толстой атмосферой, насыщенной углекислым газом, и давление на ее поверхности очень высоко, а в результате температура там превышает 430 градусов по Цельсию, а атмосфера Марса истончилась и высохла – и теперь в основном состоит из углекислого газа. Еле заметная прослойка воздуха обеспечивает давление всего в 0,6 % давления земной атмосферы, а диапазон температур составляет в зависимости от времени года и местоположения от –130 до +20 градусов по Цельсию. Однако мы надеемся, что именно на Марсе условия подходят для возникновения жизни: у нас есть явные доказательства, что когда-то по его поверхности текла вода, накапливаясь во впадинах, а минералогический и химический состав его почвы и атмосферы не так уж отличается от среды во многих местах на Земле.

Атмосферы планет очень нестойки и переменчивы. Тонкий покров атмосферы вроде земной удерживается одной лишь гравитацией. Однако атомы и молекулы газов находятся в постоянном движении, и чем выше температура, тем больше средняя скорость составляющих атмосферу частиц. Особенно шустрые частички способны разогнаться до критической скорости и умчаться в космическую пустоту[80]. Обычно беглянки состоят из самых легких компонентов, и именно поэтому Земля уже давно растеряла первоначальную атмосферу из водорода и гелия. И сегодня, если молекулы воды в атмосфере распадаются под воздействием ультрафиолетового излучения или потока частиц, атомы водорода способны подняться вверх и вырваться из объятий Земли.

Судя по всему, ограничить эти потери помогает магнитное поле планеты: оно отчасти защищает верхние слои атмосферы от агрессивного звездного излучения. И хорошо, поскольку сбежавшие атомы водорода пропадают навсегда, а вместе с каждым атомом мы лишаемся молекулы воды, в которую он входил, из-за чего планета могла бы иссохнуть, – возможно, подобный механизм и превратил марсианский климат, некогда куда более влажный и теплый, в нынешнюю безводную пустыню.

Земля тоже уже не та, что поначалу. Условия на ее поверхности – и температура, и химический состав – с течением эпох очень сильно менялись. Однако древнейшие минералы – кристаллы циркона – говорят нам, что либо на поверхности планеты, либо поблизости от нее всегда была вода в жидком состоянии. А главное, в течение первых полутора миллиардов лет после формирования Земли в атмосфере было очень мало весьма активного элемента – кислорода.

Затем это изменилось, и изменилось благодаря подлинно незаурядному явлению – зарождению на планете жизни. Примерно два с половиной миллиарда лет назад одноклеточные организмы наподобие сине-зеленых водорослей одержали верх в своих экосистемах и принялись бурно размножаться. Их метаболический аппарат вырабатывал очень много кислорода, и повышение его концентрации в следующий миллиард лет совершенно преобразило планету.

Менялись и другие характеристики. Средняя температура на Земле в прошлом была заметно выше нынешней – на несколько градусов. Однако иногда она падала так низко, что почти вся планета покрывалась льдом[81]. Тем не менее глубоко укоренившиеся химические и геофизические циклы, судя по всему, подталкивают наш климат к своего рода неустойчивому равновесию – сохраняют жидкую воду на поверхности, поскольку состав атмосферы контролирует потерю тепла.

Живые существа самым непосредственным образом участвуют в работе сложнейшей системы планетных механизмов. В любой момент их триллионы триллионов – они процветают и вымирают, питаются и разлагаются, и неустанно меняют мир. Фантастически бурная деятельность! Однако по космическим масштабам все это жалкие мелочи, изменения характеристик планеты, которые ни к чему особенному не приведут – примерно как еле заметное выветривание окаменелостей. И в самом деле, картина в целом заставляет взглянуть на наше существование с иной точки зрения, отличающейся от привычной нам, людям, эгоистичной и местнической.

 

* * *

 

Умение смотреть на картину в целом – один из важнейших подходов, без которого нам не разобраться в хитростях самого принципа заурядности и доводов против него и не начать формулировать ответы на вопрос о нашей роли в мироздании. Давайте представим себе ненадолго, что мы наблюдаем нашу Галактику, Млечный Путь, извне. Мы всемогущи и всевидящи и способны наблюдать всю сложную структуру более чем из 200 миллиардов звезд, огромные объемы газа, пыли и темной материи – и всю их эволюцию на протяжении не просто веков или тысячелетий, а миллиардов лет. Кроме того, у нас слабость к отдельным звездным объектам, и Солнце – один из них.

Когда мы заметили его в первый раз, этот волк-одиночка только-только зажег свое ядро ослепительным огнем протон-протонного цикла. Энергия этой топки вырывается наружу двумя путями. Один – непрерывный поток субатомных частиц под названием нейтрино. Эти призрачные созданьица практически ни с чем не взаимодействуют, и даже плотная громада Солнца для них в основном прозрачна – они вылетают оттуда во Вселенную с околосветовой скоростью. Другой компонент энергии термоядерного синтеза – густой поток фотонов, которые просачиваются через 650 000 километров солнечной плазмы, а потом вырываются в космос в виде света – видимого, ультрафиолетового и инфракрасного. Этот мощный поток излучения согревает планеты, астероиды, кометы, пыль и газ, вращающиеся вокруг Солнца. У внутренних планет он играет главенствующую роль в создании среды на поверхности – накачивает энергией циркулирующие атмосферы, и даже океан жидкой воды на третьей по счету планете. Однако звездочка, за которой мы наблюдаем, медленно, но неуклонно меняется. За первые четыре миллиарда лет она стала ярче примерно на 30 % и за это время обеспечила бурное развитие разнообразных живых существ на третьей планете. Примерно через 10 миллиардов лет она стала вдвое ярче, чем в молодости. Мы с философской печалью отмечаем признаки старения – неизбежный прогресс, который закончится смертью.

В отличие от многих других явлений во Вселенной, звезды вроде Солнца с возрастом становятся все ярче – до поры до времени. Когда одинокие протоны ядра водорода сливаются в недрах звезды, создавая ядра гелия, они меняют фундаментальный состав звезды – обогащают его более тяжелым элементом. В результате внутренность звезды становится плотнее и горячее, а темп потребления водорода постепенно повышается (вспомните костер, который медленно схлопывается и при этом горит все ярче и жарче).

Это, конечно, сильно повлияло на влажную планету, которая вращается вокруг Солнца: к рубежу в шесть миллиардов лет возрастающая яркость звезды разогрела климат до таких пределов, что океаны из жидкой воды могут уже и не сохраниться. Однако к десяти миллиардам лет это уже самая маленькая из проблем, с которыми столкнулась эта планета и ее ближайшие соседки. Солнце сожгло последние капли водорода в ядре и начинает трудный и мучительный переход в звездную загробную жизнь.

В течение периода, который в описываемом далеком будущем продлится чуть больше миллиарда лет, наша звезда все больше разрастается и становится все беспокойнее. Внешняя ее оболочка раздувается, причем рывками, и в конце концов поглощает внутренние планеты, а гигантский раскаленный докрасна шар почти достигает орбиты когда-то влажной планеты. При этом некогда цельная звезда разбрасывает огромное количество своего вещества, пылающего газа и быстро конденсирующейся пыли в межзвездное пространство. Так она в конечном итоге израсходует чуть ли не половину своей массы. Это радикально меняет гравитационную динамику планет, ее окружающих, чьи орбиты приспосабливаются к обстановке и тоже расширяются в соответствии с законами, которые вывело одно разумное живое существо по имени Исаак Ньютон более миллиарда лет спустя.

Стремительное расширение Солнца обеспечивается целым рядом внутренних перестановок и процессов. Когда расходуется весь водород в ядре, оно начинает сжиматься и нагреваться. Вокруг него остается лишь тонкая оболочка из водорода, участвующего в термоядерном синтезе – это немного похоже на мерцание периметра только что догоревшего костра. Однако в конце концов сжимающееся ядро так сильно разогревается, что начинается так называемая тройная гелиевая реакция. Этот процесс требует температуры в 100 миллионов градусов – в десять раз больше, чем для протон-протонной реакции. Кроме того, эта реакция не такая производительная, однако в результате гелий превращается в два новых элемента – кислород и углерод. В следующие сто миллионов лет ядро звезды все сильнее уплотняется, и поток энергии заставляет внешнюю часть звезды еще сильнее расти – пока гелиевое топливо тоже не истощится.

Для нашей звезды-сиротки настает переломный момент. Примерно через 12 миллиардов лет и менее 60 оборотов по орбите вокруг галактики Млечный Путь она сожгла все, что могла. Массы ей не хватает даже для того, чтобы поднять температуру в ядре до уровня, необходимого для пережигания ядер углерода, поэтому новых источников энергии у нее нет – в кладовой не осталось ничего съестного.

Вскоре процессы в ней прекращаются, и последние вспышки энергии лишь отталкивают остатки внешних покровов, сдувают их в межзвездное пространство и создают прелестную туманность, раскинувшуюся на десятки световых лет. В конце концов остается лишь внутреннее ядро Солнца, нагое и неприкрытое. Оно состоит из углерода и кислорода, а схлопываться ему не дают странные фундаментальные силы, порожденные квантовой природой субмикроскопического мира, где корпускулярно-волновой дуализм вещества создает сопротивление давлению гравитации.

Этот диковинный объект мы называем белым карликом. Источника энергии у него нет. Это просто тлеющий уголек, которому на остывание требуются триллионы лет. И при этом составляющие его атомы складываются в решетку, в периодический узор – звезда кристаллизуется. Далекое будущее Солнца – превратиться в огромный темнеющий углеродно-кислородный самоцвет, висящий в космическом пространстве.

Глядя на эту крупинку, мы видим, что некоторые из ее первоначальных планет пережили катаклизм[82]. Например, бывшая третья планета умудрилась избежать разрушения во время агонии звезды. Теперь она вращается на расстоянии почти вдвое дальше от центра системы, чем поначалу, поскольку Солнце утратило около 40 % прежней массы. Бесплодная, обледенелая планета бесконечно и бесцельно кружит вокруг темнеющего белого карлика – останков своей материнской звезды.

Так кончается биография в десять миллиардов лет длиной, жизненный путь одинокой звездочки, которой мы решили заинтересоваться. Однако горевать нам некогда, поскольку появилась масса похожих светил – и есть из чего выбрать следующий объект наблюдений. Пока мы наблюдали нашу любимицу во дни ее славы, на Млечном Пути родилось миллиардов десять таких же солнц.

 

* * *

 

Рождение Солнечной системы ознаменовалось бурной физико-химической активностью, но большинство реакций длилось не больше нескольких десятков миллионов лет. Затем последовали миллиарды лет довольно мирного реликтового существования на протяжении жизни одной скромной звездочки. Но с нашей, человеческой точки зрения это – вечность, наполненная хитросплетением взаимосвязанных действий и событий.


Дата добавления: 2019-02-12; просмотров: 152; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!