Почему мы забываем купить молоко



 

Вторник. Близится вечер. Я собираюсь с работы домой. Жена звонит и просит купить по пути бутылку молока. Никаких проблем. В лифте и по пути к машине я в уме повторяю задание, чтобы не забыть. Сажусь в машину, еще раз напоминаю себе о молоке, поправляя зеркала и поворачивая ключ зажигания. Домой я еду привычным маршрутом. Но лишь добравшись до места, уже у самой двери внезапно вспоминаю, что забыл купить молоко… в очередной раз. Но я не слишком расстроен: во‑первых, у меня очень понимающая жена, а во‑вторых, у меня есть веский нейробиологический повод забыть о молоке.

Говоря о том, как наш мозг хранит и использует информацию, ученые выделяют несколько различных типов памяти. Среди них есть такие, как процедурная и эпизодическая память. Процедурная память связана с выполнением некоторых действий. Благодаря ей мы помним, как ездить на велосипеде, завязывать узел, печатать на клавиатуре, вести машину. Чем чаще повторяется действие, тем лучше оно запоминается. Эпизодическая память хранит в себе автобиографические события – это память о наших ощущениях, чувствах, местах, где нам доводилось бывать, мыслях (например, мыслях о том, что по пути домой надо купить бутылку молока). С ее помощью мы не забываем то, что с нами происходит.

Эти виды памяти не только хранят неодинаковую по своей сути информацию, но и действуют в разных областях мозга. Центр эпизодической памяти располагается в глубине мозга, в гиппокампе, рядом с височной долей. Активность в этой области возникает тогда, когда мы действуем не по привычке, и, как мы видели на примере мыши в лабиринте, уменьшается при «привычном» поведении. Центр процедурной памяти находится на внешней стороне стриатума, в той области, что отвечает за формирование привычек. И это не случайно.

Когда электрический заряд на время деактивирует мышиный гиппокамп, нетренированная мышь вообще не может пересечь лабиринт. Она не помнит, где она, куда хочет попасть, зачем ее посадили в лабиринт. Без помощи гиппокампа, который хранит и подает нужные сведения, дезориентированная мышь бегает по лабиринту совершенно хаотично. Однако, если отключить работу гиппокампа после того, как мышь успешно научится перемещаться по лабиринту, она по своему обыкновению побежит прямо и повернет налево. А все потому, что за привычки отвечает внешняя часть стриатума. Гиппокамп же никак не связан с этим процессом, поэтому его деактивация не влияет на мышь и ее маршрут.

Как же все это связано с тем, что я забыл купить молока? Вспомните: когда занятый своими мыслями водитель приезжает на работу, он вообще не помнит, как до нее добирался, потому что ехал по привычке. Привычка реализуется исключительно благодаря процедурной памяти. Всякий раз, когда действие осуществляется посредством системы привычки, оно не фиксируется в эпизодической памяти. Если же фрагмент нашей жизни не отпечатывается в эпизодической памяти, мы не можем припомнить ничего из связанных с этим фрагментом изображений (например, на рекламных щитах), звуков или ощущений. Мы просто приучаемся выполнять некое действие – только и всего.

Но привычка не только не фиксируется эпизодической памятью, она еще и блокирует доступ к ней. С этой проблемой я и сталкиваюсь, когда еду домой и пытаюсь не забыть просьбу жены. По пути я думаю о своем, а процедурная память помогает мне вести машину. В итоге я теряю доступ к эпизодической памяти и потому забываю тот важный факт, который хотел бы запомнить. Системе привычек о молоке ничего не известно, и, отдав ей контроль за движением, я оказываюсь в ситуации, когда вспомнить о дополнительной задаче нет возможности. И все же это не до конца меня оправдывает: ведь, если подумать, я мог бы приложить все усилия и не дать привычке меня одолеть.

 

Почему мы едим, когда не голодны?

 

Если система привычки захватывает над нами контроль, нам становится сложнее добраться до сведений, хранящихся в эпизодической памяти, то есть до контекстуальной информации, которая помогает принимать решения, осознавать, где мы находимся, или не забывать о том, что надо выполнить какое‑то задание. А еще эта память помогает отказываться от еды, когда мы не голодны. Причин для отказа может быть множество: страх набрать вес, переживания о здоровье или просто ощущение сытости. Тем не менее очень многие из нас едят, когда совсем не голодны. Такое поведение чаще всего называют «плохой привычкой», при этом и не думая о науке. Однако исследования подтверждают, что дело тут именно в привычке.

Ученые отобрали 32 здоровых добровольца, попросили их сесть за компьютеры и нажимать на кнопку всякий раз, когда на экране появится определенная картинка. После нажатия на кнопку автомат выдавал испытуемым либо чипсы, либо конфетки M&M's. Испытуемые съедали угощение. Задание выполнялось в несколько этапов, каждый по 8 минут, но половина участников прошли лишь два этапа, а остальные – 12, то есть в сумме у второй группы оказалось в шесть раз больше тренировочного времени, а значит, у ее членов должна была выработаться привычка нажимать на кнопку. Ученые внимательно следили за мозговой активностью всех испытуемых. Значительное повышение активности стриатума (области, где закрепляются привычки), которое было отмечено у членов второй группы на последних этапах, подтвердило, что привычка сформировалась. Так что будем теперь называть эти группы «группой без привычки» и «группой с привычкой».

Чтобы определить, как появление привычки влияет на наше пищевое поведение, ученые обратили особое внимание на активность определенной области мозга – вентромедиальной префронтальной коры, находящейся в нижней части лобной доли. Основная функция этой области – прогнозирование ожидаемых событий. В зависимости от этого прогноза мозг активирует те или иные механизмы поведения. Например, когда мы голодны и сидим в ресторане, а официант приближается к нашему столу с тарелками, полными еды, у нас в мозгу буквально вспыхивают нейронные фейерверки – мозг чувствует, что сейчас начнется ужин. Подобная мозговая активность происходит во многом благодаря работе вентромедиальной префронтальной коры. Мозг прогнозирует положительное событие и отдает команду вести себя соответствующим образом. Поэтому, когда мы с нетерпением ждем, пока перед нами расставят тарелки с едой, вентромедиальная префронтальная кора активно включается в работу: она чувствует приближение трапезы. Однако, когда мы наедаемся, эта реакция подавляется. Если официант принесет еще одну тарелку, вентромедиальная префронтальная кора будет вести себя гораздо спокойнее. Отклик окажется очень слабым, перспектива поесть обесценится , поэтому нам уже не захочется жевать дальше. Ученые полагают, что в таком случае соседние области префронтальной коры подавляют чувство голода, инициируемое гипоталамусом. Таким образом вентромедиальная префронтальная кора обеспечивает обратную связь. Когда мы голодны, она призывает нас поесть, но, когда мы насыщаемся, она убеждает нас остановиться.

Ученые решили сравнить активность вентромедиальной префронтальной коры у испытуемых из группы с привычкой и группы без привычки. Вентромедиальная префронтальная кора у членов второй группы включалась в работу каждый раз перед тем, как они нажимали на кнопку, – она прогнозировала появление угощения и давала сигнал к началу трапезы. Но так происходило, пока испытуемые были голодны. Что же случилось, когда они наелись? Ученые накормили членов группы без привычки полноценным обедом. Далее испытуемые вернулись к заданию. Теперь уже вентромедиальная префронтальная кора не реагировала на нажатие кнопки столь бурно. Испытуемые насытились и уже не так ждали конфет M&M's или чипсов. Вентромедиальная префронтальная кора понижала ценность угощения, и испытуемым не хотелось есть.

Далее проверку прошли члены группы с привычкой. Когда они были голодны, их вентромедиальная префронтальная кора активно реагировала на нажатие кнопки, предчувствуя появление угощения. После этого испытуемых досыта накормили, и они вернулись к заданию: продолжили нажимать на кнопку под пристальным вниманием ученых. Однако на этот раз аппарат МРТ показал, что активность вентромедиальной префронтальной коры нисколько не ослабела. Перспектива трапезы не обесценилась, несмотря на сытость испытуемых. Обратная связь нарушилась. Очевидно, из‑за того, что участники по привычке нажимали кнопку и ели после этого, мозг не смог разубедить их отказаться от еды. Реакция вентромедиальной префронтальной коры только укореняла привычку есть, не чувствуя голода, из‑за чего потребление пищи стало машинальным.

Это объясняет, почему мы нередко продолжаем есть, несмотря на сытость. Когда привычка побеждает нас, процесс питания становится машинальным. Но как она это делает? Можем ли мы ей помешать? Взглянем вот с какой стороны: есть две системы, управляющие нашим поведением, – автоматизированная система привычки и «задумчивая» система сознания. Они могут работать как самостоятельно, так и в паре, но ни одна из систем не способна выполнять две задачи сразу. Система сознания может и вести машину, и размышлять о дневных событиях, но только не одновременно. Если система сознания занята, система привычки получает задание выполнять водительские обязанности. Когда сознание наше наполняется мыслями (иными словами, когда мы начинаем «витать в облаках»), оно отстраняется от реальных дел. Мы теряем доступ к эпизодической памяти и забываем о некоторых насущных задачах. Система привычки побеждает нас при выполнении любого – даже самого рутинного – действия.

Такое часто происходит, когда нас что‑то отвлекает, например телевизор. Врачи настоятельно рекомендуют не есть перед телевизором, поскольку это может привести к ожирению. Когда мы пассивно смотрим на экран, телевизор в определенном смысле монополизирует наше сознание. Поэтому, если во время просмотра мы выполняем какое‑нибудь повторяющееся действие, например едим картофельные чипсы, его будет контролировать система привычки. Ушедший в раздумья водитель способен перемещаться на автопилоте, а едок‑телезритель – незаметно для себя съесть пять упаковок чипсов, пока сознание поглощено повтором «Сайнфелда»[16]. К сожалению, поскольку доступа к эпизодической памяти в это время нет, не вспоминается ни о боли в животе, ни о наборе веса и сердечных заболеваниях, ни даже о банальном принципе умеренности.

Когда наши головы полны мыслей, возможность сознательно контролировать поведение теряется, и тогда наши действия начинают определяться некой программой. А что случилось бы с нами, потеряй мы возможность самоконтроля навсегда? Стабильная потеря самоконтроля может возникнуть при повреждении лобной доли, в которую входит вентромедиальная префронтальная кора. Когда мозг перестает быть центром управления нашими действиями, мы теряем возможность принимать разумные решения. Мозг переходит в режим привычки, и тогда в поведении появляется автоматизм.

 

Исполнительная дисфункция

 

В когнитивной неврологии термин «исполнительная функция» используется в связи с высокоуровневыми процессами мозга, такими как планирование, принятие решений, контроль за вниманием и собой. Исполнительная функция мозга сродни функциям генерального директора компании. Благодаря ей мы контролируем собственные мысли и поведение.

Повреждения лобной доли могут негативно сказаться на исполнительной функции, и тогда человек рискует разучиться планировать, принимать здравые решения и даже контролировать соответствие собственного поведения социальным нормам. Он начнет действовать словно по привычке. Владимира, русского студента примерно 20 лет, обучавшегося на инженера, сбил поезд, когда молодой человек выскочил на рельсы за футбольным мячом. Удар пришелся на лобную долю. Увы, Владимир потерял способность к мыслительным процессам высокого уровня, в частности способность принимать решения. Обыкновенно он сидел без движения и смотрел прямо перед собой. Когда медсестры пытались с ним заговорить, он либо игнорировал их, либо начинал ругаться. Ему было сложно следовать даже простейшим инструкциям. Когда один из врачей дал Владимиру лист бумаги и попросил нарисовать круг, пациент ответил ему безучастным взглядом и полным бездействием. Тогда врач взял его руку и помог нарисовать круг. В итоге Владимир и сам смог нарисовать круг, но не остановился на достигнутом. Он все рисовал новые и новые круги до тех пор, пока врач не убрал его руку от листа. Судя по всему, рисовать круги у пациента получалось благодаря работе процедурной памяти. Однако из‑за повреждения лобной доли он не мог остановиться.

Другой, еще более яркий пример дисфункции лобной доли – состояние, называемое «синдромом чужой руки», при котором рука пациента может, например, спонтанно схватить лежащий неподалеку предмет. Это движение происходит не осознанно, а совершенно автоматически. Порой пациент даже не в силах отпустить предмет – и ему приходится высвобождать его второй рукой. Бывали случаи, когда для того, чтобы «чужая» рука разжалась, ее обладателю приходилось кричать на нее, а одна из пациенток рассказывала, как ее чуть не задушила собственная рука. «Чужие» руки, как правило, мешают остальному телу выполнять некоторые действия: например, расстегивают рубашку в то время, как нормальная, «своя» рука пытается ее застегнуть. По рассказам пациентов, «чужая» рука нередко забирает предметы из «своей» руки и вообще всячески вредит. Абсолютно невольные движения руки в данном случае обусловлены именно дисфункцией лобной доли.

Французский невролог Франсуа Лермитт описал, как пациенты с повреждениями лобной доли порой используют окружающие их предметы – нередко нарушая тем самым социальные нормы. В ходе одного из экспериментов Лермитт пригласил пациента с повреждением лобной доли к себе в кабинет. На столе у двери Лермитт оставил картину в раме, молоток и гвоздь. Войдя в комнату и увидев лежащие на столе предметы, пациент без промедлений забил гвоздь в стену и повесил картину. Никто его, разумеется, об этом не просил. Очевидно, заметив молоток и гвоздь, он инстинктивно поступил с ними так, как привык поступать, – совсем как занятый своими мыслями водитель, который по привычке едет на работу, даже когда ему туда не нужно. Если разум не вмешивается и не включает исполнительные функции, то система привычки одерживает верх и руководит действиями.

В ходе еще одного эксперимента двух пациентов с повреждением лобной доли, многодетную мать и работающего холостяка, по очереди ввели в комнату с незаправленной кроватью. Мать зашла первой. Первым делом она подошла к кровати, подоткнула простыни, взбила подушку и заботливо накрыла постель покрывалом. Потом один из ассистентов снова разворошил кровать, и в комнату позвали второго пациента, холостяка. Он тут же подошел к постели, завалился в нее и заснул. Как и в первом эксперименте, исполнительная дисфункция заставила обоих пациентов вести себя так, как они привыкли, и в данном случае их поведение соответствовало гендерным стереотипам.

Лермитт доказал, что эффект, который он назвал «утилизационным поведением», можно наблюдать только у людей, привыкших использовать предмет, задействованный в эксперименте. Когда он в качестве эксперимента положил сигарету с зажигалкой напротив курильщика и некурильщика (у обоих испытуемых была повреждена лобная доля), закурил лишь первый. Некурильщик же не стал вообще ничего делать. У него не было соответствующей привычки, потому и не возникло автоматической реакции.

Можно ли сказать, что при повреждении лобной доли срабатывает тот же автоматизм, что и при действии по привычке? Не совсем так. Повреждение лобной доли может иметь самые разные последствия, и абсолютно одинаковых случаев не бывает. Однако элементы поведения пациентов с данными травмами очень напоминают автоматизм при работе системы привычки. Стриатум, область, ответственная за эту работу, при изолированном повреждении лобной доли оказывается незадетой. При исполнительной дисфункции мозг начинает опираться на систему привычки, и тогда в поведении возникают определенные стереотипические нюансы.

При исполнительной дисфункции, в результате травмы или же по причине увлеченности мыслями, мозг, управляя нашим поведением, обращается к иным ресурсам, что и ведет к автоматизму. В течение какого‑то времени мы даже можем действовать на автопилоте, сами того не осознавая, – совсем как зомби. Но вопрос вот в чем: если автоматические процессы в мозге могут за нас вести машину, вешать картины, заправлять кровать, на что еще они способны?

 

Убийство на автопилоте

 

Кеннет Паркс, молодой человек 23 лет, жил в Торонто. У него была стабильная работа в компании, занимающейся продажей электроники. Он жил вместе с женой, их браку было уже два года, и они воспитывали пятимесячную дочку. Отношения с тещей и тестем складывались замечательно, Парксу даже казалось, что эти люди ему ближе, чем родители. Теща звала его своим «ласковым великаном».

Весной 1987 года жизнь Паркса значительно осложнили последствия некоторых жизненных ошибок. Он увлекся азартными играми, стал часто посещать скачки, где делал ставки на довольно слабых лошадей. Проиграв несколько раз, Паркс начал тратить деньги компании, чтобы жена ничего не заметила. Походы на работу превратились в кошмар, ведь там Кеннет должен был изо всех сил скрывать растраты. Когда же все раскрылось, Паркса уволили и подали на него в суд. Ему было невероятно трудно признаваться жене в своем пристрастии, особенно учитывая, что из‑за него пришлось выставлять дом на продажу.

Нередко мысли об огромном долге мешали Парксу уснуть. Если же он все‑таки засыпал, сон часто прерывался приступами сильнейшей тревоги. Сходив на встречу анонимных любителей азартных игр, Паркс решил, что настало время открыто обсудить свои финансовые сложности с семьей, в том числе с родителями жены. Накануне этого разговора он и глаз не сомкнул. Утром он был уставшим и разбитым и попросил жену отложить семейную встречу до следующего дня. В 1:30 ночи в воскресенье, 23 мая, Паркс наконец заснул.

А потом он вдруг увидел перекошенное от ужаса лицо тещи, падающей на пол. Он побежал к машине, сел за руль и обнаружил у себя в руках нож, перепачканный кровью. Он бросил нож и поехал прямиком в отделение полиции. «Кажется, я кого‑то убил», – сказал он полицейским.

После множества допросов кусочки истории Паркса наконец сложились воедино. Он напрочь позабыл все, что происходило между мгновением, когда он заснул, и той секундой, когда он увидел лицо тещи. Однако, как выяснили следователи, за это время он многое успел. Он встал с дивана, обулся, надел куртку, вышел на улицу, отъехал от дома примерно на 23 километра, по пути остановившись минимум на трех светофорах, зашел в дом к родителям своей жены, попытался задушить тестя и зарезал тещу. Однако ничего из этого он вспомнить не мог.

Медицинская диагностика не выявила ни болезни, ни признаков употребления наркотиков, и тогда за дело взялась группа из четырех психиатров. Было очевидно, что Паркса изрядно напугало произошедшее и что у него отсутствовал злой умысел. Не было и четкого мотива, ведь убийство не несло Парксу никакой выгоды. Кроме того, у Паркса не было особых сложностей с контролем агрессии. Он обладал средним интеллектом и не страдал от галлюцинаций и психозов. Пораженные психиатры не нашли никаких медицинских зацепок и не внесли ясности в дело.

В итоге благодаря неврологу появилось предположение, что причина произошедшего может крыться в дефиците сна. У Паркса, как и у многих членов его семьи, сон часто был фрагментарным, бывали у него и приступы лунатизма, особенно в детстве. Однажды братья даже поймали его, когда он в состоянии глубокого сна пытался вылезти в окно, и вместе уложили его в постель. Он писался и разговаривал во сне, ему нередко снились кошмары – все эти симптомы связаны с лунатизмом. Невролог решил провести полное исследование сна с помощью полисомнографа, аппарата, который фиксирует мозговые и дыхательные волны, движения глаз и мышц, а также пульс человека, когда тот спит. Диагностика выявила у Паркса хронический лунатизм. В конце концов удалось собрать все доказательства и передать дело в суд, вердикт которого был таким: Паркс напал на своего тестя и убил тещу во время приступа лунатизма. Его оправдали по обоим пунктам обвинения. Вот что сказал судья:

 

Слово «автоматизм» вошло в юридический язык совсем недавно, однако один из главных принципов правосудия уже несколько веков состоит в том, что отсутствие злого умысла при совершении преступления всегда говорит в пользу обвиняемого. Обвиняемый совершил рассматриваемое нами злодеяние невольно, а потому должен быть полностью оправдан… Ранее человек, уличенный в чем‑либо преступном, признавался невиновным в том случае, если нарушал закон в бессознательном или полусознательном состоянии. Не отвечал он за свои деяния и тогда, когда не мог в полной мере осмыслить содеянное из‑за расстройства ума. Основа нашего уголовного права такова: человек должен отвечать только за предумышленные, осознанные поступки.

 

Чтобы лучше понять, что же происходило в мозгу Кеннета в ту жуткую ночь, нам надо рассмотреть стадии сна. Сначала вы погружаетесь в дрему. На этой ступени вас легко разбудить, и, проснувшись, вы можете даже не понять, что спали. Далее ваши мышцы расслабляются, хотя иногда и продолжают непроизвольно сокращаться. Пульс замедляется, температура падает, и организм готовится вступить в глубокий сон. Затем начинается стадия глубокого сна – именно в это время люди могут видеть кошмары или не сдержать мочеиспускание. И именно в этой фазе и случаются приступы лунатизма. И наконец, в фазу быстрого сна мышцы полностью парализуются. В это время можно увидеть самые яркие, реалистичные сны. Благодаря временному параличу мышц мы смотрим сны, пребывая в неподвижности. Чего, однако, не скажешь про лунатика Кеннета.

Лунатизм – загадочный пример того, как автоматические неконтролируемые процессы руководят поведением человека, что, как мы убедились, может привести к жутким последствиям. Ученые из Американской академии медицины сна выделили следующие характеристики лунатизма.

1. Во время приступа человека трудно разбудить.

2. При пробуждении его сознание спутано.

3. Наблюдается полная или частичная амнезия (человек не помнит самого приступа).

4. В ходе приступа человек ведет себя потенциально опасным образом.

Судя по наблюдениям, в ходе приступов лунатизма может произойти все что угодно. Люди кидают тяжелые предметы, прыгают из окон и даже пытаются заняться сексом. Такое проявление сексуальности во сне получило в научной литературе название «сексомния». И это еще один пугающий пример того, на что человек способен во сне.

Лунатики, совершающие во сне потенциально опасные поступки, зачастую не могут потом о них вспомнить. Люди узнают о своих приступах от других – например, от жены (мужа). Некоторые догадываются о своем лунатизме, когда обнаруживают себя не там, где засыпали. Но почему поголовно все лунатики не помнят своих приступов? Может показаться, причина амнезии в том, что мозг не активен и, значит, не осознает происходящего. Ведь люди спят. Однако на самом деле во время медленного сна сознание довольно активно. Мышцы у лунатиков в этот период не расслабляются полностью, поэтому во сне они совершают различные действия.

Возможно, лунатики забывают о своих приступах по той причине, что мозг не заносит произошедшее в эпизодическую память. В этом случае они похожи на тех водителей, которые не запоминают, как добирались до работы, потому что думают о предстоящей презентации. Но что же занимает мысли лунатиков? Их сны.

Иногда мы запоминаем сны, но чаще забываем. Исследования показывают, что это зависит от стадии сна. Если нам что‑нибудь снится в фазу быстрого сна, мы запоминаем увиденное в 75 % случаев. Если же в фазу медленного сна – менее чем в 60 %. Причины такого различия неизвестны. Во время медленного сна наши видения короче, чем в фазу быстрого сна, и больше напоминают связные истории. Но если они столь фрагментарны и непоследовательны и если мы запоминаем их немногим чаще, чем в половине случаев, как же лунатизм влияет на наши сны и память о них? В 2009 году группа ученых задалась этим вопросом и провела соответствующее исследование.

46 испытуемых, находящихся под наблюдением специалистов по сну минимум два года, попросили описать все впечатления и детали, связанные с их личным опытом лунатизма, какие они только могут вспомнить. Затем ученые систематизировали все эти данные. Они обнаружили, что 71 % испытуемых хотя бы частично помнят те сны, что были связаны с приступами лунатизма. Из тех, кто помнил свои сны, большинство (84 %) описывали эти видения как малоприятные, страшные. В таблице ниже приводятся некоторые из снов, рассказанных испытуемыми. Сюжет сна сопоставляется с тем, как человек повел себя в реальности.

 

 

Люди часто запоминают сны, которые видели незадолго до приступа, но сам приступ и свои действия они не помнят. Они могут только проанализировать то, что случилось после приступа. Когда мы не контролируем свое поведение сознательно – в случае, если мозг поврежден или ум занят другими проблемами, – система автоматизма берет над нами верх. В приведенной выше таблице наблюдаются четкие параллели между содержанием сна и поведением во время приступов лунатизма. При приступах сознание порабощается видениями, и тогда тело действует на автопилоте. Лунатики напоминают автоматонов[17], повторяющих действия из своих снов в реальности.

Кеннет Паркс спал плохо. Он находился в состоянии сильного психологического напряжения, поскольку готовился встретиться с родителями своей жены и признаться в собственной лжи и безалаберности, навлекших беды на его семью. Если учитывать нестабильность его психического состояния, не исключено, что в ту ночь ему приснился способ избежать конфронтации. Возможно, во сне он понял, что для этого нужно, чтобы теща и тесть умерли до семейной встречи. Если бы Паркс не спал и отдавал себе отчет в происходящем, скорее всего, он не стал бы никого убивать. Но во сне человек может представить все что угодно.

Очень возможно, что в ту ночь в сознание Кеннета Паркса просочился кошмар. Будучи не в состоянии контролировать свои действия, Паркс сдался системе автоматизма. Он сел за руль и, преисполненный жутчайших мыслей, проехал более 20 километров, а потом совершил убийство – и все это на автопилоте. Очевидно, зомби все‑таки существуют и они и впрямь способны на зверские поступки.

Мы во власти у системы, которая способна контролировать наше поведение. Она может действовать и вопреки нашим же насущным интересам, как в случаях, когда из‑за нее мышь идет не в ту часть лабиринта или мужчина совершает преступление. Возникает очевидный вопрос: почему же эта система существует? Судя по всему, естественный отбор оставил ее человеку не просто так. Так что же нам дает эта система?

 

Две системы многозадачности

 

Исполняя свою классическую песню «Piano Man» (1973), Билли Джоэл играет на двух инструментах одновременно: на фортепиано и губной гармошке. Играть двумя руками само по себе довольно трудно, но при этом еще и аккомпанировать себе на втором инструменте – трюк, который не каждому под силу. Как же Билли Джоэл это делает? Возникает соблазн сказать, что он обладает сверхспособностями, которых больше ни у кого нет. Однако сам музыкант с этим не согласен. В интервью Алеку Болдуину, которое Джоэл давал в 2012 году, он сказал о своем умении играть на фортепиано так:

 

Билли Джоэл. Я знаю, что такое хорошая игра на фортепиано. Я играю плохо. Левая рука у меня просто ужасная. Двупалая, я бы даже сказал.

Алек Болдуин. В сравнении с кем?

Билли Джоэл. В сравнении с пианистом, который знает, как работать левой рукой. Мне не хватает практики, чтобы играть всеми пальцами левой руки, поэтому я беру ею только октавы и басовые ноты. Правой рукой я пытаюсь компенсировать неуклюжесть левой, поэтому правая, пожалуй, даже «переигрывает». У меня ужасная техника.

 

Несмотря на скромность Билли Джоэла, в его словах о том, что ему трудно играть сложные басовые партии левой рукой, потому что ему не хватает практики, чувствуется искренность. Так как же он смог играть еще и на губной гармошке? На фортепиано он наигрывал простые мелодии, которые легко было довести до автоматизма. Пока пальцы бегали по клавишам, Джоэл мог сосредоточиться на втором инструменте.

В интервью Джоэл также признался, что ему трудно читать ноты.

 

Алек Болдуин. Если бы я взял музыкальный фрагмент, который вы не знаете, достал ноты, поставил перед вами и попросил: «Сыграйте вот это…»

Билли Джоэл. О, ноты для меня – китайская грамота.

 

Представьте, что было бы, попытайся Джоэл сыграть фрагмент фортепианной партии с листа, одновременно аккомпанируя себе на губной гармошке. Ничего бы не вышло. Играть на двух инструментах в его случае возможно лишь тогда, когда одна из партий максимально упрощена и исполняется на автопилоте.

Привыкнув вести машину, играть на музыкальном инструменте или даже подниматься пешком по лестнице, мы начинаем выполнять эти действия быстрее, особо не задумываясь. Чем меньше мы о них думаем, тем лучше получается. Одно из главных преимуществ, которое дарит нам доведение некоторых действий до автоматизма, – это возможность решать несколько задач одновременно. Занятый своими мыслями водитель может поразмышлять о том, как улучшить предстоящую презентацию, потому что система привычки ведет машину за него. Билли Джоэл играет на губной гармошке и фортепиано одновременно, потому что его пальцы сами бегают по клавишам. Даже ходим мы машинально – и это умение тоже в определенной мере требует практики. Причина, по которой мы можем одновременно говорить по мобильнику и идти не падая, в том, что нам не надо сосредотачивать внимание на каждом шаге.

Как доказать, что при решении нескольких задач все происходит именно так, как описано выше? Для этого нужно убедиться, что человек, усердно повторяющий некое действие (благодаря чему формируется соответствующая привычка), сможет при этом приняться и за иное действие, не потеряв эффективности или потеряв ее незначительно. Группа специалистов Иллинойсского университета провела именно такой эксперимент. Они обучили 39 добровольцев играть в компьютерную игру «Космическая крепость», в которой игроки должны с помощью джойстика управлять космическим кораблем и стрелять по крепости, находящейся в центре экрана. Цель игры – разрушить эту самую крепость и уберечь корабль от мин. Очки начисляются за попадание в крепость, а при столкновении с минами вычитаются. Управлять кораблем так же непросто, как и автомобилем на дороге, полной машин.

Играть в «Космическую крепость» – было первым заданием. А второе было звуковым. Участники должны были прослушать несколько звуков подряд и определить, какой из них отличается от остальных. Порой звуки оказывались очень похожими, и тогда задание становилось особенно трудным и требовало от участников особой внимательности.

Испытуемым объяснили, что нужно делать, и эксперимент начался. При сосредоточенном прослушивании добровольцы верно определяли непохожие звуки в 97 % случаев. Затем их попросили выполнить задание еще раз, только теперь нужно было параллельно играть в «Космическую крепость». Результаты ухудшились. Из‑за отсутствия у испытуемых сноровки очки ушли в минус, то есть столкновений с минами было больше, чем метких попаданий в крепость. Более того, поскольку участники уделяли внимание сразу двум задачам, им удалось верно определить лишь 82 % непохожих звуков.

На следующем этапе эксперимента участников попросили просто играть в «Космическую крепость». Они играли в нее снова и снова – в общей сложности на это ушло 20 часов. По окончании тренировки их вновь попросили сыграть в игру, при этом прослушивая звуки. На этот раз испытуемые стреляли в крепость как профессионалы, угадав при этом 91 % звуков. Как это объяснить? В отсутствие привычки им приходилось уделять внимание сразу двум действиям, что негативно сказалось на результате. Но тренировка помогла научиться играть более‑менее машинально. И тогда высвободилось внимание для звукового задания, которое удалось выполнить лишь немногим хуже, чем в самом начале эксперимента. Если начальник когда‑нибудь застанет вас за игрой в «Сапера» на рабочем месте, можете этим оправдаться.

Ученые также следили за происходящим в мозге испытуемых с помощью электроэнцефалографа. Они наблюдали за нейронной активностью до и после тренировки – особенности этой активности могли пролить свет на то, как работает мозг при выполнении двух заданий одновременно. Каждый раз, когда испытуемые успешно попадали по крепости, на электроэнцефалограмме появлялась одна и та же волна. Похожее усиление нейронной активности наблюдалось и тогда, когда испытуемые слышали непохожий на остальные звук. До тренировки активность нейронов и при попадании в крепость, и при определении неправильного звука была примерно одинаковой. Однако после 20 часов за компьютерной игрой мозг стал значительно спокойнее реагировать на попадание по крепости, возможно, потому, что для выполнения этого действия стало требоваться меньше нейронных ресурсов. Но зато во время выполнения звукового задания нейронная активность значительно возросла. Когда испытуемые более‑менее привыкли стрелять по крепости, они смогли внимательнее вслушиваться в звуки. Итоги экспериментов, как поведенческие, так и электрофизиологические, показывают, что доведение до автоматизма одного из действий помогло уделить второму больше внимания. Благодаря чему и возникла возможность успешно выполнить несколько задач одновременно.

Распределить ресурсы между несколькими сложными задачами непросто, но мозг помогает нам в этом. У нас есть две параллельные системы, которые контролируют наши действия. Они функционируют с разной силой и обращаются к разным видам памяти. Система привычки методично и быстро действует на основе заложенной программы. Благодаря ей можно справиться с рутинной работой, например добраться до офиса привычным маршрутом или повернуть налево в лабиринте. Благодаря автоматизму мы можем обратиться ко второй системе, отвечающей за глубокий, сознательный анализ. Возможно, работает эта система медленнее, нежели система привычки, но зато она более пластична. Она учитывает контекстуальные изменения, например необходимость найти новый маршрут на работу, если дорога ремонтируется. Мозг при помощи логики отыскивает действия, которые можно довести до автоматизма, давая нам возможность сосредоточиться на новых задачах.

Секрет многозадачности кроется в автоматическом выполнении одного из действий. Например, совсем не сложно почистить апельсин во время увлеченного разговора с другом по телефону или просмотра любимого телешоу. Но вникнуть в материал из учебника по физике в таких условиях будет крайне трудно. Это действие нельзя довести до автоматизма, оно требует внимания и осознания. Однако читать учебник и чистить апельсин одновременно можно: система сознания будет воспринимать информацию, а система привычки – снимать кожуру с фрукта. Вот как работают системы поведенческого контроля.

Можно еще спросить мнение Барака Обамы. В конце своего первого срока в интервью изданию Vanity Fair он рассказал, как поступает в быту, чтобы хватало времени и сил на действительно важные решения. «Я ношу только серые или синие костюмы, – признался он. – Стараюсь свести количество решений к минимуму. Не хочу каждый раз выбирать, что мне есть или носить. Мне и так есть о чем подумать. Нужно беречь энергию. Нужно упростить свой быт. Нельзя допустить, чтобы мелочи отвлекали нас от насущных проблем».

Внутренняя логика мозга создает платформу для многозадачности. Именно этого‑то и лишены зомби. Им доступна лишь одна из систем: они могут действовать исключительно на автопилоте, сознания же у них нет. Зомби могут доехать до места работы, но, к сожалению для них, они не способны выполнять сразу несколько задач, по крайней мере так, как это делаем мы. Наш мозг предоставляет нам огромное преимущество, если только система не повреждается (как, например, при исполнительной дисфункции) или если мы сами не перестаем ей пользоваться (как во время приступов лунатизма).

Кажется, нейрологическое основание важности практики найдено – как мы убедились, повторение действия помогает довести его до автоматизма. Чем больше мы тренируемся, тем машинальнее становится действие и тем проще его выполнять параллельно с чем‑нибудь еще. Однако история Кеннета Паркса вызывает вопросы. Он никогда не практиковался в удушении или нанесении ран ножом. У него не было опыта убийств. Однако же во сне он оказался способен на чудовищное преступление. Он совершил его на автомате. Вероятно, физическое повторение действия – не единственный способ набраться опыта. Возможно, мозг реально натренировать и при помощи сознания.

 

 


Дата добавления: 2019-02-12; просмотров: 197; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!