Классификация и конструкции конденсаторов.



По назначению конденсаторы делятся на конденсаторы общего назначения и

специального назначения. Конденсаторы общего назначения делятся на низкочастотные и высокочастотные. К конденсаторам специального назначения относятся высоковольтные, помехоподавляющие, импульсные, дозиметрические, конденсаторы с электрически управляемой емкостью (варикапы, вариконды) и др.

По назначению конденсаторы подразделяются на контурные, разделительные, блокировочные, фильтровые и  т.д., а  по характеру изменения емкости на постоянные, переменные и полупеременные (подстроечные).

По материалу диэлектрика различают три вида конденсаторов: с твердым, газообразным и жидким диэлектриком. Конденсаторы с твердым диэлектриком делятся на керамические, стеклянные, стеклокерамические, стеклоэмалевые, слюдяные, бумажные, электролитические, полистирольные, фторопластовые и др.

По способу крепления различают конденсаторы для навесного и печатного монтажа, для микромодулей и микросхем.


Конденсаторы гибридных ИМС представляют собой трехслойную структуру: на подложку наносится металлическая пленка, затем диэлектрическая пленка и снова металлическая пленка. В качестве конденсаторов полупроводниковых ИМС может использоваться один из электронно-дырочных переходов транзистора или МДП -структура : роль нижней обкладки выполняет подложка (П), роль диэлектрика (Д) выполняет слой окиси кремния SiO2 и роль верхней обкладки конденсатора выполняет металлическая пленка (М).

П акетная конструкция. Она применяется в слюдяных, стеклоэмалевых, стеклокерамических и некоторых типах керамических конденсаторов и представляет собой пакет диэлектрических пластин (слюды) I толщиной около 0,04 мм, на которые напылены металлизированные обкладки 2, соединяемые в общий контакт полосками фольги 3 (рис.2.12). Собранный пакет спрессовывается обжимами 4, к которым присоединяются гибкие выводы 5, и покрывается влагозащитной эмалью. Количество пластин в пакете достигает 100 .

 
Емкость такого конденсатора зависит от числа пластин в пакете, пФ ,

 

 
(2.20)

 

 

Т р убчатая конструкция. Она характерна для высокочастотных      трубчатых

конденсаторов и представляет собой керамическую трубку I (рис.2.13) с толщиной стенок около 0,25 мм, на внутреннюю и внешнюю поверхность которой методом вжигания нанесены серебряные обкладки 2 и 3. Для присоединения гибких проволочных выводов 4 внутреннюю обкладку выводят на внешнюю поверхность трубки и создают между ней и внешней обкладкой изолирующий поясок 5, снаружи на трубку наносится защитная

 
пленка из изоляционного вещества. Емкость такого конденсатора

 

 

(2.21)

 

 

где                                               l - длина перекрывающейся части обкладок в                                                   см,


D 1 и D2 - наружный и внешний диаметры трубки

Дисковая конструкция. Эта конструкция (рис.2.14) характерна для высокочастотных керамических конденсаторов: на  керамический диск  I  с

 
двух сторон вжигаются серебряные обкладки 2 и 3, к которым присоединяются гибкие  выводы  4.  Емкость  такого  конденсатора определяется площадью обкладок и рассчитывается по (2.19).

 

 

 
Л и т ая секционированная конструкция. Эта конструкция характерна для монолитных многослойных керамических конденсаторов (рис.2.15), получивших в последние годы широкое распространение, в том числе в аппаратуре с ИМС.

 

 

Такие  конденсаторы изготовляют путем литья горячей керамики, в результате которого получают керамическую заготовку I с толщиной стенок около  100  мкм  и  прорезями (пазами)  2  между ними,  толщина  которых порядка 130-150 мкм. Затем эта заготовка окунается в серебряную пасту, которая заполняет пазы, после чего осуществляют вжигание серебра в керамику.

В результате образуются две группы серебряных пластин, расположенных в пазах керамической заготовки, к которым припаиваются гибкие выводы. Снаружи вся структура покрывается защитной пленкой. В конденсаторах, предназначенных для установки в гибридных ИМС, гибкие


выводы отсутствуют, они содержат торцевые контактные поверхности, которые присоединяются к контактным площадкам ГИС.

Р улонная конструкция. Эта конструкция (рис.2.16) характерна для бумажных пленочных низкочастотных конденсаторов, обладающих большой

емкостью. Бумажный конденсатор образуется путем свертывания в рулон бумажной ленты  1  толщиной около  5-6  мкм  и  ленты  из  металлической фольги 2 толщиной около 10-20 мкм. В металлобумажных конденсаторах вместо фольги применяется тонкая металлическая пленка толщиной менее 1 мкм, нанесенная на бумажную ленту.

 
Рулон из чередующихся слоев металла и бумаги не обладает механической жесткостью и прочностью, поэтому он размещается в металлическом корпусе, являющемся механической основой конструкции.

 

 
Емкость таких конденсаторов

 

 

(2.22)

где                                            b - ширина ленты, l - длина ленты, d - толщина                                            бумаги.

Емкость бумажных конденсаторов достигает 10 мкф, а металлобумажных 30 мкф.

П о д с т р о е н н ы е (полупеременные) конденсаторы. Особенностью этих конденсаторов является то, что их емкость изменяется в процессе производства РЭА (регулировки), а в процессе эксплуатации емкость таких конденсаторов  должна  сохраняться  постоянной  и  не  изменяться  под

воздействием вибрации и ударов.

Они могут быть с воздушным или твердым диэлектриком. На рис.2.17 показано устройство подстроенного конденсатора с твердым диэлектриком типа КПК (конденсатор подстроечный керамический). Такой конденсатор состоит из основания 2 (статора) и вращающего диска 1 (ротора). На основание и диск напылены серебряные пленки полукруглой формы. При вращении ротора изменяется площадь перекрытия пленок, а следовательно, емкость конденсатора. Как правило, минимальная емкость (когда пленки не перекрыты) составляет несколько пикофарад, а при полном перекрытии пленок емкость конденсатора будет максимальной, величина этой емкости


составляет несколько десятков пикофарад. От ротора и статора сделаны внешние выводы 3 и 4. Плотное прилегание ротора к статору обеспечивается прижимной пружиной 5.

 

 
                                                                      На    рис.2.18 показано                устройство подстроечного

конденсатора с воздушным диэлектриком. На керамическом основании 1 установлены колонки 2 для крепления пластин статора 3. Пластины ротора 4 закреплены на оси ротора 5. Посредствам пружины - токосъема 6 ротор подключается  к  соответствующим  точкам  принципиальной схемы. Крепление конденсатора осуществляется с помощью колонок 7, имеющих внутреннюю резьбу.

Кондерсаторы  переменной емкости. Емкость этих конденсаторов может плавно изменяться в процессе эксплуатации РЭА, например, для настройки  колебательных контуров.  Так  же,  как  и  подстроечный конденсатор, он состоит из статора и ротора, но в отличие от подстроечных количество роторных и статорных пластин велико, что необходимо для получения максимальной емкости порядка 500 пф. Как правило, эти конденсаторы  имеют  воздушный  диэлектрик.  На  рис.2.19  показано

устройство трехсекционного конденсатора переменной емкости. Каждая секция служит для настройки своего колебательного контура. Такие конденсаторы применяются в радиоприемной аппаратуре. Конструктивной основой является корпус 4, содержащий валики крепления 7 и планку крепления 9, в котором размещены статорная и роторная секции. Ста-торная секция  5  изолирована от  корпуса,  а  роторная  секция  1  состоит  из неразрезных (внутренних) пластин 11 и разрезных (внешних) пластин 10.

.Отгибая или подгибая часть сектора внешней пластины, можно изменять


емкость в небольших пределах, что бывает необходимо в процессе заводской настройки аппаратуры. Роторные пластины закреплены на оси 2. Плавность вращения оси обеспечивается шариковым подшипником 3 и подпятником 8. На корпусе конденсатора около каждой роторной секции установлены специальные пружины -токосъемы 6, которые плотно прижимаются к ротору. Посредством токосъемов производится подключение роторных секций к соответствующим точкам схемы аппаратуры.

 

 

Параметры конденсаторов.

 

 

Основными параметрами являются емкость и рабочее напряжение. Кроме того, свойства конденсаторов характеризуются рядом паразитных параметров.

Номинальная емкость Сном и допустимое отклонение от номинала

±DС. Номинальные значения емкости Сном высокочастотных конденсаторов так же как и номинальные значения сопротивлений стандартизированы и определяются рядами Е6, Е12, Е24 и т.д.(см.табл.2.1). Номинальные значения емкости электролитических конденсаторов определяются рядом: 0,5; 1; 2; 5;

10; 20; 30;50; 100; 200; 300; 500; 1000; 2000:5000 мкф.

Номинальные значения емкости бумажных пленочных конденсаторов определяются рядом: 0,5; 0,25; 0,5; 1;  2; 4; 6; 8; 20; 20; 40; 60; 80; 100;

200;400; 600; 800; 1000 мкф.

По  отклонению  от  номинала  конденсаторы  разделяются  на  классы

(табл.2.4).

Таблица 2.4

 

Класс 0,01 0,02 0,05 00 0 I II II IV V VI
Допуск, % ±0,1 ±0,2 ±0,5 ±1 ±2 ±5 ±10 ±20 -10 +20 -20 +30 -20 +50

 

Конденсаторы I, II, и III классов точности являются конденсаторами широкого применения и соответствуют рядам Е24, Е12 и Е6.


В зависимости от назначения в РЭА применяют конденсаторы различных классов  точности.  Блокировочные и  разделительные конденсаторы обычно выбирают по II и III классам точности, контурные конденсаторы обычно имеют 1,0 или 00 классы точности, а фильтровые - IV, V и VI классы точности.

Электрическая прочность конденсаторов характеризуется величиной напряжения пробоя и зависит в основном от изоляционных свойств диэлектрика. Все конденсаторы в процессе изготовления подвергаются воздействию испытательного напряжения в течении 2 - 5 с. В технической документации  указывается  номинальное напряжение,  т.е.  такое максимальное напряжение, при котором конденсатор может работать длительное время при соблюдении условий, указанных в технической документации. Для повышения надежности РЭА конденсаторы используют при напряжении, которое меньше номинального.

Стабильность емкости определяется ее изменением под воздействием внешних факторов. Наибольшее влияние на величину емкости оказывает температура.  Ее  влияние  оценивается  температурным  коэффициентом

 
емкости (ТКЕ):

 

 

(2.23)

Изменение емкости обусловлено изменением                диэлектрической

проницаемости диэлектрика, изменением линейных размеров обкладок конденсатора и диэлектрика.

В основном же изменение емкости вызывается изменением диэлектрической проницаемости.

У высокочастотных конденсаторов величина ТКЕ не зависит от температуры и указывается на корпусе конденсатора путем окраски корпуса в определенный цвет и нанесения цветной метки.

У низкочастотных конденсаторов температурная зависимость емкости носит  нелинейный  характер.  Температурная  стабильность этих конденсаторов оценивается величиной предельного отклонения емкости при крайних значениях температуры. Низкочастотные конденсаторы разделены на три группы по величине температурной нестабильности: Н20 - ±20%; НЗО

- ±30%; Н90 - (+50 -90)%.

Стабильность конденсаторов во времени характеризуется коэффициентом старения

 

 

                                                                                                         (2.24) Потери              энергии   в  конденсаторах

обусловлены электропроводностью и поляризацией диэлектрика (см. 1.6.7) и характеризуются тангенсом угла диэлектрических потерь tgd.  Конденсаторы


с керамическим диэлектриком имеют tgd »10-4, конденсаторы со слюдяным диэлектриком - 10-4, с бумажным - 0,01-0,02, с оксидным-0,1-1,0.

 

 


Дата добавления: 2019-01-14; просмотров: 174; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!