Вязкость жидкости. Уравнение Ньютона.

Транспорт неэлектролитов. Виды транспорта.

Транспорт неэлектролитов (сахаров, аминокислот и нуклеотиды, вода) через клеточные мембраны осуществляется с помощью поры, образованные транспортным белками или липидами погруженными в мембрану.

В первую очередь транспорт веществ через мембраны подразделяется на активный и пассивный.

Пассивный транспорт: Простая диффузия, облегчённая диффузия и фильтрация.

Активный транспорт: Первично активный и вторично активный транспорт.

Отдельным типом транспорта  является везикулярный транспорт.

1.Простая диффузия. Простая диффузия неэлектролитов не требует наличия каких-либо специализированных структур, зависит только от липофильности и градиента концентрации. В общем случае диффузия зависит от размеров частицы: Вероятность диффузии крупных молекул через мембрану ниже. Простая диффузия электролитов затруднена наличием мембранного потенциала и гидрофильностью, поэтому диффузия электролитов требует участия специальных селективных каналов в мембране. Электролиты играют важную роль в жизнедеятельности клетки и транспорт электролитов может регулироваться изменением проницаемости каналов.

2.Облегчённая диффузия. Осуществляется с участием специализированных переносчиков. Перенос осуществляется значительно быстрее, чем простая диффузия. С её помощью осуществляется перенос аминокислот, моносахаридов, некоторых ионов.

3.Фильтрация осуществляется через специальные образования в мембране - поры, через которые может происходить неспецифический транспорт растворов. Фильтрация происходит по градиенту гидростатического давления и зависит от вязкости раствора и размеров поры.

4.Первично активный транспорт. Всегда сопряжён с использованием энергии АТФ и транспортирует вещества против градиента концентрации. Транспортеры очень специфичны относительно переносимых частиц и могут регулироваться.

5.Вторично активный транспорт. Является частным случаем облегчённой диффузии, но при этом транспорт одного вещества против градиента концентрации сопряжён с транспортом другого вещества по градиенту концентрации. Возможны два случая: симпорт и антипорт, в зависимости от направления транспорта.

6.Везикулярный транспорт. Осуществляется транспорт в замкнутых мембранах. Транспорт обеспечивается слиянием и разделением мембранных везикул, частным случаем являются процессы фагоцитоза и пиноцитоза. Это единственный способ транспорта крупных, состоящих из большого числа молекул, частиц.

 

Уравнение Нернста, смысл. Условия и механизм возникновения мембранного потенциала в реальной клетке. Роль пассивных сил и активных сил.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

 – уравнение Нернста для металлического электрода

Мембранный потенциал (МП) представляет собой разность потенциалов между наружной и внутренней поверхностями мембраны возбудимой клетки в условиях ее покоя. В среднем у клеток возбудимых тканей МП достигает 50 – 80 мВ, со знаком минус внутри клетки. Исследование природы мембранного потенциала показало, что во всех возбудимых клетках (нейроны, мышечные волокна, миокардиоциты, гладкомышечные клетки) его наличие обусловлено преимущественно ионами К+.

Основными ионами, определяющими величину МП, являются ионы К+, покидающие клетку. Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионной асимметрии. Для этого, в частности, служат ионные насосы (Na-K - насос, а также, вероятно, Сl- насос) которые восстанавливают ионную асимметрию, особенно после акта возбуждения. Так как этот вид транспорта ионов активный, т. е. требующий затраты энергии, то для поддержания мембранного потенциала клетки необходимо постоянное наличие АТФ. Если тело находится в покое, это не означает, что на это тело не воздействуют другие тела, другие силы. Например, груз лежит на столе, стол неподвижен, но он не свободен от силы притяжения, с силой собственного веса груз давит на поверхность стола, но поверхность стола давит в свою очередь на груз с силой, равной весу груза (эту силу называют силой реакции или реакцией). В приведенном примере сила, с которой давит груз, является активной силой, а сила давления поверхности стола на груз—-пассивной силой. Сила притяжения всегда действует на все тела, в то же время большинство тел остаются неподвижными (движение земли не учитывается). Тела, находящиеся в покое, уравновешены силами реакций, по своей величине всегда равными активным сила.                                 

 

Вязкость жидкости. Уравнение Ньютона.

Вя́зкость (вну́треннее тре́ние) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате работа, затрачиваемая на это перемещение, рассеивается в виде тепла.

Это уравнение Ньютона. Здесь h - коэффициент пропорци­ональности, называемый коэффициентом внутреннего трения, или динамической вязкостью (или просто вязкостью). Вязкость зависит от состояния и молекулярных свойств жидкости (или газа). Единицей вязкости является паскалъ-секунда (Па • с). В системе СГС вязкость выражают в пуазах (П): 1 Па • с = 10 П. Для многих жидкостей вязкость не зависит от градиента скорости, такие жидкости подчиняются уравнению Ньютона, и их называют ньютоновскими. Жидкости, не подчиняющиеся уравнению, относят к неньютоновским. Иногда вязкость ньютоновских жидкостей называют нормальной, а неньютоновских - аномальной. Жидкости, состоящие из сложных и крупных молекул, например растворы полимеров, и образующие благодаря сцеплению молекул или частиц пространственные структуры, являются неньютоновскими. Их вязкость при прочих равных условиях много больше, чем у простых жидкостей. Увеличение вязкости происхо­дит потому, что при течении этих жидкостей работа внешней си­лы затрачивается не только на преодоление истинной, ньютоновской, вязкости, но и на разрушение структуры. Кровь является неньютоновской жидкостью.

 

 

 

\

Модуль № 1

Регистрация кривой порога слышимости

Изучение аппарата для измерения артериального давления

Снятие электрокардиограммы и построение вектора ЭДС сердца

№ вопроса Ответ № вопроса Ответ № вопроса Ответ
1. 1 1. 2 1. 2
2. 3 2. 2 2. 1
3. 2 3. 2 3. 5,2,3,1,4
4. 2 4. 3 4. 1
5. 1 5. 3 5. 3,4,2,5,1
6. 4 6. 1 6. 3
7. 1 7. 1 7. 1
8. 1 8. 1 8. 2,4,1,5,3
9. 3 9. 2 9. 3
10. 1 10. 3 10. 2

 

 

                                

 

 


Дата добавления: 2019-01-14; просмотров: 755; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!