Регенерация масла в трансформаторе, находящиеся в работе
Регенерация - это восстановление окисленного масла или, точнее, удаление из него продуктов старения. На практике обычно сталкиваются с регенерацией эксплуатационных масел с кислотным числом, не превышающим 0,3-0,4 мгКОН/г масла. В условиях эксплуатации для регенерации применяются различного рода адсорбенты. Восстанавливающие свойства адсорбентов основаны на способности осаждать на их поверхности продукты старения, при этом никакой химической реакции не происходит. Между молекулами адсорбента и адсорбируемого вещества действуют силы межмолекулярного притяжения.
Применяются адсорбенты естественного и искусственного происхождения. Из числа естественных чаще других используется отбеливающая земля "зикеевская опора", из искусственных - силикагель (крупнопористый марки КСК и мелкопористый КСМ). Значительно реже применяется активный оксид алюминия, обладающий высокой адсорбционной способностью по отношению к кислым продуктам старения масла.
При регенерации масло прокачивается через наполненный адсорбентом бак-адсорбер. Передвижные адсорберы применяются для регенерации масла как во время ремонта, так и в работающих трансформаторах
Адсорбционные и термосифонные фильтры получили распространение для непрерывной регенерации масла в трансформаторах в процессе эксплуатации. Их выполняют в виде металлических цилиндров, заполненных сорбентом, поглощающим продукты окисления и влагу из циркулирующего через них масла. Адсорбционные фильтры применяют в системах охлаждения ДЦ и Ц, где обеспечивается принудительная прокачка масла через фильтры, термосифонные фильтры - на трансформаторах с системами охлаждения М и Д. Масло в термосифонных фильтрах перемещается сверху вниз вследствие разности плотностей нагретого и охлажденного масла.
Сорбентом в фильтрах служит силикагель КСК или активный оксид алюминия, которые предварительно должны быть хорошо просушены. Фильтры подключают к трансформаторам со свежим маслом. Очередную замену сорбента производят после того, как кислотное число превысит 0,1-0,12 мгКОН/г масла.
Использование пирометров и тепловизоров
По способу вывода информации и ее обработки приборы удаленного контроля нагрева поверхностей подразделяют на:
пирометры
тепловизоры.
Устройство пирометров
Условно состав этих приборов поблочно можно представить:
инфракрасным датчиком с оптической системой и зеркальным световодом;
электронной схемой, преобразующей полученный сигнал;
дисплеем, на котором отображается температура;
кнопкой включения.
Принципиальное устройство пирометра
Поток теплового излучения фокусируется оптической системой и зеркалами направляется на датчик первичного преобразования тепловой энергии в электрический сигнал с величиной напряжения, прямо пропорциональной инфракрасному излучению.
Вторичное преобразование электрического сигнала происходит в электронном устройстве, после которого измерительно-счетный модуль осуществляет вывод информации на дисплей, как правило, в цифровом виде.
Пирометры обладают различными углами обзора, характеристикой которых для удобства пользователей выбраны соотношения между расстоянием до объекта измерения и площадью охвата контролируемой поверхностью
Поскольку эти характеристики прямо пропорциональны между собой, то для точного измерения температуры необходимо не только правильно навести прибор на объект, но и подобрать расстояние для выбора площади измеряемой зоны.
Тогда оптическая система будет обрабатывать тепловой поток от нужной поверхности без учета влияния излучения окружающих предметов.
Устройство тепловизоров
Конструкция этих измерительных приборов температуры напоминает устройство пирометров. У них в качестве приемного элемента потока инфракрасного излучения работает гибридная микросхема
Тепловая чувствительность тепловизоров на основе матричных детекторов позволяет измерять температуру с точностью до 0,1 градуса. Но, такие высокоточные устройства используются в термографах сложных лабораторных стационарных установок.
Все приемы работы с тепловизором выполняются так же, как и с пирометром, но на его экране выводится картинка электротехнического оборудования, представленная уже в переработанном цветовом диапазоне с учетом состояния нагрева всех деталей.
Рядом с термическим изображением размещается шкала перевода цветов в линейку температур.
При сравнении работы пирометра и тепловизора можно увидеть разницу:
пирометр определяет среднюю температуру в контролируемой им области;
тепловизор позволяет оценить нагрев всех составных элементов, расположенных в наблюдаемой им зоне.
С этой целью усовершенствованные модели пирометров оснащаются лазерными целеуказателями, которые помогают навести термодатчик на объект и облегчить определение площади контролируемой поверхности. Они могут иметь разные принципы работы и обладать неодинаковой точностью наведения.
Описанные выше устройства представлены мобильными моделями, позволяющими выполнять последовательные замеры температуры на многих местах работы электрического оборудования:
вводах силовых и измерительных трансформаторов и выключателей;
контактах разъединителей, работающих под нагрузкой;
сборках систем шин и секций высоковольтных распределительных устройств;
в точках соединения проводов воздушных линий электропередач и других местах коммутации силовых цепей.
Дата добавления: 2019-01-14; просмотров: 418; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!
