ФУНДАМЕНТАЛЬНАЯ И ЗАНИМАТЕЛЬНАЯ ГЕОЛОГИЯ



Голубые алмазы сформировались в нижней мантии Земли


Рис. 1. Слева — алмаз Хоупа без оправы, фото с сайта en.wikipedia.org . Справа — один из исследованных в обсуждаемой статье алмазов (образец 110208425476), в котором хорошо видны минеральные включения; фото из обсуждаемой статьи в Nature

Своим голубым цветом алмазы типа IIb обязаны примесям бора — легкого химического элемента, сконцентрированного в земной коре. Однако алмазы формируются в мантии, где бора должно быть гораздо меньше. Международная группа ученых в ходе двухлетнего исследования детально изучила минеральные включения в 46 алмазах, захваченные в процессе их кристаллизации. Включения представляют собой образцы среды, в которой формировались алмазы. Анализ этих образцов методом рамановской спектроскопии показал, что в момент захвата алмазами они находились в нижней мантии — значит, именно в этой части земных недр и образовались алмазы. Источником бора в этом случае могли послужить погружающиеся фрагменты океанических литосферных плит, которые попутно поставляли в нижнюю мантию не только бор, но и водород, насыщая ее этими элементами и создавая условия, необходимые для роста кристаллов.

Круговорот вещества в масштабах Земли обеспечивается за счет тектоники плит. Основные механизмы на данный момент уже довольно хорошо изучены: это субдукция (погружение плотной и тонкой океанической коры базальтового состава под более легкую и толстую континентальную плиту гранитного состава) и спрединг(образование новой океанической коры в зоне срединно-океанических хребтов, где плиты раздвигаются).

На спрединг можно почти в буквальном смысле посмотреть: либо с помощью спускаемых глубоководных аппаратов, либо поднять новообразованные породы драгами, либо же взглянуть на древние фрагменты океанической коры, например, на Кипре или в Омане, где их выдавило на поверхность за счет тектонических процессов. Изучать субдукцию и дезинтеграцию океанической коры несколько сложнее: эти процессы происходит в основном в земной мантии. Что-то можно узнать геофизическими методами — сейсморазведкой или магнитотеллурическим зондированием, — где-то выручают эксперименты на прессах (multi-anvil press) или алмазных наковальнях, позволяющие воссоздать условия в недрах Земли. Но важные вопросы все равно остаются. Как глубоко погружается кора и сколько ее «доезжает» до разных глубин? На каких «остановках» этого «поезда» к ядру Земли сходят легкие химические элементы — водород, бор, углерод, азот, которые предположительно должны были «всплыть» в кору и содержание которых в мантии пока не до конца изучено? Понятно только примерное положение конечной станции — глубина 2900 км. Это граница внешнего ядра и нижней мантии (см. Core–mantle boundary): ниже утонуть уже особенно некуда — там слишком горячее и плотное ядро.

И здесь работа геохимика начинает напоминать работу детектива-криминалиста: нужно выделять характерные наборы и концентрации элементов в одной породе и искать их следы в других породах или процессах, изначально совершенно не связанных с исходной породой. Поскольку пробурить скважину к центру Земли, чтобы напрямую отобрать пробы, вряд ли получится в обозримом будущем — это все же не роман Жюля Верна, — то остается рассчитывать на те ничтожные количества материи, которые попадают из глубины на поверхность естественным путем, исследуя материал древних вулканов, подводящие каналы которых сейчас называем кимберлитовыми трубками. Самое грустное, что и такой материал подходит для изучения лишь в очень редких случаях: при высоких температурах и давлениях стабильны совершенно иные химические фазы и при подъеме наверх химические соединения порой разваливаются на несколько других и меняют свою кристаллическую структуру. К примеру, гранат мейджорит (majorite) Mg3(Fe2+, Si, Al)2(SiO4)3 при снижении давления становится смесью граната Mg3Al2Si3O12 и пироксена (Mg, Fe, Al)2Si2O6, а стабильный при давлениях выше 6 ГПа стишовит (stishovite) SiO2 при подъеме на поверхность меняет структуру и превращается сначала в коэсит (с той же формулой), а потом — в кварц.

Но некоторые минералы могут пережить почти все, что угодно. И главный из них — алмаз. Он может образовываться на разных глубинах и, если в процессе роста кристалла алмаза в нем застряло вещество из окружающей среды, то выросший кристалл послужит сверхпрочной капсулой для таких минеральных включений. Изучение включений в алмазах, на данный момент, наряду с экспериментами на специальных прессах, является основным источником знаний о мантии Земли и происходящих в ней процессах (см. новости Карбонатные осадки океана могут окислять вещество земной мантии, «Элементы», 14.02.2018 и Нитриды и карбонитриды из нижней мантии могут помочь найти потерянный азот, «Элементы», 17.11.2017). Более того, алмазы настолько прочные, что могут сохранять внутри себя вещество под давлением в несколько гигапаскалей. Кроме всего прочего алмазы бывают прозрачны, а значит, для изучения включений не обязательно доставать их из камня, достаточно сфокусировать лазер и снять спектр комбинационного рассеяния. Хотя, конечно, потом хорошо бы достать и нормально измерить химический состав и другие свойства, спектроскопия дает возможность понять, какие соединения есть во включении, но не количественные соотношения элементов в них.

Особенно интригующими и неуловимыми для ученых до последнего времени оставались голубые алмазы типа IIb (J. M. King et al., 1998. Characterizing natural-color type IIb blue diamonds). К ним, например, относится знаменитый алмаз Хоупа, хранящийся в невероятно маленьком и вечно забитом людьми зале в Национальном музее естественной истории в Вашингтоне. Характерный голубоватый цвет возникает из-за примесей бора. Для этих камней типично отсутствие линий поглощения азота при анализе с помощью инфракрасной спектроскопии. Бор также отвечает и за полупроводниковые свойства (p-тип) этих алмазов (E. Gaillou et al., 2012. Boron in natural type IIb blue diamonds: chemical and spectroscopic measurements). Любопытно, что если концентрация бора совсем низкая или у камней есть дополнительные дефекты, то они визуально будут казаться бесцветными. Но, в отличие от мультфильма «Алладин», они были нужны ученым не для воплощения злобных планов, а для благородных научных задач.

Алмазы типа IIb формируются в мантии. И присутствие в них бора ставит перед геологами непростую загадку, ведь этот легкий элемент должен был весь «всплыть» при образовании земной коры (E. S. Grew, 2017. Boron: from cosmic scarcity to 300 minerals). Дело в том, что на ранних этапах жизни нашей планеты составляющее ее вещество разделилось на ядро, мантию и кору: тяжелые металлы (железо, никель, золото, платина и др.) в основном утонули в ядро, средние (магний, алюминий, кремний) составили мантию и кору, а совсем легкие (бор, литий, кислород) сконцентрировались в коре. Не говоря уже о водороде, кислороде, азоте и углероде, из которых получились атмосфера и гидросфера. Откуда же легкий бор взялся в мантии? И где в мантии образовались эти алмазы, которые, казалось бы, не могут содержать этот элемент?

Чтобы в этом разобраться было проведено уникальное исследование 46 голубых алмазов типа IIb. Статья с результатами вышла недавно в журнале Nature. Дело в том, что голубые алмазы невероятно дорогие, редкие (их менее 0,02% от общего объема добычи) и чистые, то есть не содержат минеральных включений, которые могли бы прояснить обстановку, в которой они формировались.

Для исследования были отобраны алмазы из самых известных месторождений центральной Африки, Индии, Южной Америки и острова Борнео. Все они попали на поверхность в разное время за счет кимберлитового вулканизма: самым древним изученным камням 1,15 млрд лет (из трубки Премьер), самым молодым — 90 млн лет (из месторождения Летсенг). Из-за их стоимости и редкости никто не даст их распилить (так обычно ученые поступают с алмазами) голубой алмаз, чтобы посмотреть на включения в нем. Да и просто получить доступ к камням не так легко. Всё это несколько усложнило и затянуло исследование: оно шло на протяжении двух лет и велось совместно с Американским гемологическим институтом (Gemological Institute of America), помогавшим изучить камни на стадии огранки и получить доступ к музейным коллекциям. К примеру, были изучены алмаз Бразилиа (176,2 карата), фрагменты 122,5-каратного алмаза, из которого огранили Куллинан Дрим (24,18 карат), и части 112,5-каратного алмаза, из которого получился бриллиант Хоупа.

Для определения минерального состава включений применялась спектроскопия комбинационного рассеяния (рамановская спектроскопия): лазерное излучение с фиксированной длиной волны возбуждает колебания в структуре исследуемого вещества, спектр которых регистрируется детектором. Тип спектра зависит от набора атомов и связей между ними, поэтому является хорошим аналогом отпечатка пальцев для разных минералов — у каждого из них свой спектр (почти). Более того, отдельные пики спектра смещаются в зависимости от давления, так что иногда можно еще измерить и давление во включении, что очень удобно.

После того, как этот метод применили ко включениям в исследуемых голубых алмазах, стало ясно, что они образовались гораздо глубже, чем обыкновенные алмазы из кратонной литосферы (которые образуются на глубинах около 200 км), что, с одной стороны, стало неожиданностью, если учесть сравнительно высокое содержание бора (0,01–10 ppm), а с другой стороны подтвердило, что эти камни подходят для разрешения «борной загадки». Предполагалось, что включения будут состоять из чего-то достаточно типичного для первых сотен километров под поверхностью Земли: оливина (Mg, Fe)2SiO4, обогащенного хромом граната пиропаMg3Al2(SiO4)3 или клинопироксена Na(Al, Fe3+)Si2O6. Но все оказалось иначе: набор фаз был характерен для ранее изученной группы сверхглубинных алмазов, образующихся на глубинах от 670 до 2900 км (M. J. Walter et al., 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions). До поверхности эти включения добрались в весьма плачевном состоянии, распавшись на фазы, стабильные при меньших давлениях, и поменяв структуры. Однако ситуация была ясна благодаря экспериментам, в которых уже наблюдались подобные превращения (F. Kaminskiy, 2012. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond). Было очевидно, что исследователи имели дело с новой группой сверхглубинных алмазов. Оставалось выяснить главное — глубину и условия их образования.

Наиболее распространенным минералом включений (обнаружен в 31 из 46 образцов) был силикат кальция вальстромит CaSiO3 (минерал, стабильный на глубинах больше 300 км, рис. 2), иногда соседствовавший с ларнитом (larnite) β-Ca2SiO4 (стабилен глубже 400 км). Но в ларните отношение Ca:Si было не 2:1, как следует из формулы, а другое: оно было ближе к 1:1 (это было установлено с помощью энергодисперсионной рентгеновской спектроскопии). Что означало, что эта фаза не просто отдельно выросла и была захвачена алмазом, а являлась результатом изменения Са-перовскита, стабильного на глубинах больше 300 км (T. Stachel et al., 2000. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses).

Такая же история и с ассоциацией «NaAl-пироксен + джеффбенит» (jeffbenite), удачно найденной на поверхности одного из алмазов в процессе огранки. После количественного химического анализа можно было с уверенностью сказать, что раньше это было глубинным гранатом мэйджоритом. Более того, в том же алмазе методом спектроскопии комбинационного рассеяния была обнаружена фаза с составом MgSiO3, что соответствует минералу бриджманиту (bridgmanite, M. J. Walter et al., 2011. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions). То, что мейджорит и бриджманит оказались соседями, позволяет, основываясь на фазовых диаграммах, уточнить глубину образования алмаза: 660–750 км (B. Harte, & N. C. F. Hudson, 2013. Mineral Associations in Diamonds from the Lowermost Upper Mantle and Uppermost Lower Mantle). И это уже очень глубоко, но не предел.

 

Рис. 2. Минеральные включения в алмазах. На графиках по вертикальной осиоткладывается интенсивность сигнала, по горизонтальной — рамановский сдвиг. Каждый пик соответствует определенной химической связи (к примеру, Si-O или Al-O) в кристаллической структуре. Пунктиром показаны спектры чистых веществ для сравнения, так как иногда из-за малого размера включений лазер невозможно сфокусировать на одном минерале и получается спектр, состоящий из двух наложенных спектров (например, на графике с попался минерал кианит , а на графике d — оливин). a — бывший Ca-перовскит, ставший вальстромитом (CaSiO3), в образце 110205945970. b — бывший гранат мейджорит, превратившийся в сочетание NaAl-пироксена и джеффбенита в образце 880000037816. c — стишовит, перешедший в коэсит, в образце 101024478345. d — феррит кальция, распавшийся на нефелин и шпинель, в образце 110208245246. Изображение из обсуждаемой статьи в Nature

 

В другом алмазе была встречена ассоциация нефелина Na3K(Al4Si4O16) и шпинелиMgAl2O4, бывшие когда-то высокобарной фазой с кристаллической структурой феррита кальция (F. Tutti et al., 2000. High pressure phase transformation of jadeite and stability of NaAlSiO4 with calcium‐ferrite type structure in the lower mantle conditions). Ее наличие — верный признак того, что источником вещества для образования этого алмаза были породы, похожие на базальты. Однако он формировался в нижней мантии, где базальтов не образуется, и быть не должно, если они туда не утонули с поверхности. Также в этом алмазе были обнаружены включения карбида, сульфида и оксида железа, что не соответствует никакому известному минералу высоких давлений. А соответствует металлическому расплаву, вроде того, что был обнаружен в алмазах типа CLIPPIR (Cullinan-like, Large, Inclusion-Poor, relatively Pure, Irregularly shaped and Resorbed, что переводится, как «похожие на Куллинан, крупные, бедные включениями, относительно чистые, неправильной формы и растворенные»), в которых, кстати, нет бора и которые относятся к абсолютно другой группе сверхглубинных алмазов (E. M. Smith et al., 2016. Large gem diamonds from metallic liquid in Earth’s deep mantle). Похожие включения есть и в других изученных голубых алмазах, но важно отметить, что все же их весьма мало, тогда как в CLIPPIR они составляют основную часть всех включений. Эти улики указывают на происхождение голубых алмазов в нижней мантии из пород базальтового состава, обогащенных железом.

Другой любопытной особенностью стало обнаружение типичных глубинных флюидов — метана СН4 и водорода Н2 — в жидком состоянии окружающих минеральные включения (рис. 3). Это сигнализировало о том, что среда роста этих алмазов была сильно насыщена водородом, — гораздо более насыщена, чем это в принципе предполагается.

Бора, который отвечает за голубой цвет алмазов, в мантии в сто раз меньше, чем на поверхности Земли. Само существование таких алмазов указывает на невероятно обогащенные бором мантийные источники, которые, с учетом всех фактов, образуются из погрузившейся до нижнемантийных глубин (ниже 670 км) океанической коры (рис. 4). Скорее всего, бор сохранился в гидротермально переработанной морской водой (серпентинизированной) толще фрагмента погрузившейся коры, войдя в состав плотных водосодержащих силикатов магния (Dense Hydrous Magnesium Silicates) (F. Deschamps et al., 2013. Geochemistry of subduction zone serpentinites: A review). На больших глубинах они превращаются в иные фазы и при этом теряют содержащуюся в них воду и бор, уходящие в нижнюю мантию около фрагмента тонущей коры, где и образуются алмазы (B. Harte, 2010. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones). Они затем транспортируются на поверхность благодаря апвеллингу в мантии и кимберлитовому вулканизму.

для мантии.

Рис. 3. Жидкости в алмазах. a — вальстромит (CaSiO3, бывший Ca-перовскит) с метаном в образце 110208780369. b — Ортопироксен (бывший бриджманит) с водородом в образце 110208773706. Изображение из обсуждаемой статьи в Nature

 

 

Рис. 4. Предлагаемая схема образования голубых алмазов типа IIb. (1) Гидротермальная переработка океанической коры привносит в нее бор из морской воды. (2) Субдукция и метаморфизм приводят к формированию водосодержащих плотных магнезиальных фаз (DHMS). (3) Их распад приводит к появлению боросодержащих флюидов. (4)Кристаллизация боросодержащих алмазов в нижней мантии. (5) Транспорт алмазов на поверхность через мантийный апвеллинг и извержения древних вулканов. Рисунок из обсуждаемой статьи в Nature

Факт признания глубинного происхождения голубых алмазов означает, что геохимический цикл совершенно точно достигает границ внешнего ядра, а погружающиеся фрагменты океанической коры играют роль товарных поездов, доставляющих воду и бор в нижнюю мантию. Таким образом подтверждается предположение, что субдукция является значительным источником бора и водорода в нижней мантии (E. Ohtani et al., 2004. Water transport into the deep mantle and formation of a hydrous transition zone). Но насколько велика мощность этого механизма доставки и как давно он работает — еще предстоит выяснить.

 

Evan M. Smith, Steven B. Shirey, Stephen H. Richardson, Fabrizio Nestola, Emma S. Bullock, Jianhua Wang & Wuyi Wang. Blue boron-bearing diamonds from Earth’s lower mantle // Nature. 2018. DOI: 10.1038/s41586-018-0334-5.

Кирилл Власов


 

Грибы, которым миллиард лет

Российский ученый Константин Наговицын представил убедительные доказательства существования разнообразной грибной флоры миллиард лет назад. Фотографии показывают не только грибные мицелии, но и различные стадии жизненного цикла грибов. По ископаемым остаткам удается восстановить облик предков высших грибов, тех, которые сейчас так радуют грибников.

 

 

Прототакситы (Prototaxites) — шести-девятиметровые конусовидные сооружения девонского периода, напоминающие окаменевшие хвойные деревья, на самом деле являются гигантскими грибами. Но богатая грибная флора существовала гораздо раньше, не меньше миллиарда лет назад.

 

Каково было население Земли миллиард лет назад, то есть на границе мезо- и неопротерозоя? Миллиард лет назад жизнь развивалась в мелководных морях, а возможно, и в первичных почвах. Именно в это время происходила так называемая неопротерозойская революция, когда разнообразные сложно устроенные водоросли сместили одноклеточных и нитчатых цианобактерий. Эукариоты внедрились в прокариотические сообщества и заняли господствующее положение среди обитателей древней Земли.

Миллиард лет назад эукариот представляли не только водоросли, но и грибы. В качестве грибов (Phycomyces) того времени сейчас рассматриваются крупные клетки с хвостами, а также нитевидные образования. Нужно заметить, что в протерозойских породах нетрудно найти клеточные ископаемые остатки, микробиоты среднего протерозоя широко распространены по всему миру. Но имея разнообразные остатки, очень трудно различать водоросли и грибы, а порой и минеральные образования, маскирующиеся по форме под микроископаемые. Поэтому основное препятствие для ученого, решившего взяться за протерозойские флоры, связано именно с этим различением.

Константин Наговицын, специалист по низшим растениям из Института нефтегазовой геологии и геофизики им. А. А. Трофимука Сибирского отделения РАН (Новосибирск), выделил грибные остатки, ориентируясь на известные циклы размножения современных грибов. Объектом его исследований стала разнообразная лахандинская биота (восточная Якутия), абсолютный возраст которой составляет 1000–1030 млн лет. Среди явных водорослей найдены и загадочные булавовидные образования на нитчатых ножках — Caudosphera (что в переводе с латыни означает «шарик с хвостом»), вот такие:

 

Рис. 1. Загадочные булавовидные образования на нитчатых ножках — Caudosphera. Здесь и «груши» на полых ножках (1), и светлые сферы на ножках из сплетенных нитей (2), и непрозрачные шарики на нитчатых ножках (3) и разрушенные полости (4). Все фото здесь и далее — из цитируемой статьи, публикуются с любезного разрешения К. Наговицына

Они были известны и раньше, но виртуозное владение техникой электронного микроскопирования позволило исследователю заглянуть внутрь плотных булавовидных образований (3). Оказалось, что полость заполнена ячейками с темными спорами внутри.

 

Рис. 2. В этом ряду фотографий электронный луч просвечивает оболочки сферы (3) на разную глубину, то есть слой за слоем постепенно проявляется внутреннее содержимое сферы: округлые камерки с темными спорами

Изображенные четыре формы складываются в последовательные стадии созревания грибного спорангия. Первая и вторая формы — это незрелый спорангий, 3 — спорангий со зрелыми спорами, а 4 — раскрытый спорангий, в котором остались единичные споры. Эти спорангии располагались над поверхностью осадка, как это видно по взаимному расположению ножки и спорангия в пластах окаменевшего осадка. В органических пленках рядом со спорангиями сохраняются и отдельные нити, похожие на те, из которых сложен сам спорангий. Можно представить себе этот древний гриб: крупный мицелиеподобный нитчатый каркас, существующий в органической пленке, из которого вырастали вертикальные спорангиеносцы со спорангиями.

 

Из современных грибов сходное строение спорангиев имеют высшие грибы, однако у них грибные нити имеют клеточное строение. У грибов из древней толщи клеток не видно. Отсутствие клеточных перегородок характерно для низших грибов. Так, на примере каудосферы почтенного миллиардолетнего возраста можно видеть признаки общего предка высших и низших грибов.

 

По данным сравнительной геномики предполагается, что линия грибов и животных отделилась от простейших около полутора миллиардов лет назад, а 750 миллионов лет назад от этой ветви отделилась группа амёбоидных простейших (Amoebozoa). Получается, что где-то между этими двумя событиями, но не позже, чем миллиард лет назад, и произошло разделение на высшие и низшие грибы. В это время существовало достаточно много других разнообразных грибов. Константин Наговицын описал, помимо каудосферы, еще и другие морфологические типы грибов.

 

Рис. 3. Похожие на воздушные шарики на ниточках зооспорангии и гифы оомицетов, среди которых попадаются как заполненные спорами (13), так и пустые (12), при этом на одной мицелиальной нити могут располагаться несколько спорангиев (в случае 14 их два)

Мы должны при этом помнить, что оомицеты, по некоторым современным представлениям, вынесены за пределы царства грибов и относятся к полифилетичной группе простейших. Поэтому если в дальнейшем подтвердится оомицетная природа этих остатков, то лахандинская биота станет ареной изучения эволюции простейших. Эти разнообразные грибные остатки свидетельствуют о диверсификации грибов не позднее миллиарда лет назад. Позже, в неопротерозое (900 млн лет назад) уже существовали аскомицеты, относимые к высшим грибам. К такому выводу пришли Т. Н. Герман, В. Н. Подковыров, специалисты из Института геологии и геохронологии докембрия РАН (Санкт-Петербург). Им так же, как и для остатков из лахандинской биоты, удалось вычленить стадии жизненного цикла, характерного для грибов аксомицетов. В их случае это были микрофоссилии из мироедихинской биоты (Туруханский р-н, Северо-Западная Сибирь, 850–950 млн лет). Они определили, что цепочки клеток с утолщенными стенками схожи с конидиями аскомицет. Этот вывод подтверждается и разнообразием форм и размеров нитей из собранных в цепочки клеток, которые демонстрируют, вероятно, последовательный ряд созревающих аскоспор.

 

Рис. 4. Встречаются и вот такие ячеистые талломы (cм. также thallus) размером полмиллиметра, распластанные по органической пленке. Но на некоторых экземплярах видны растущие вверх столбчатые образования, как на экземпляре 18 (указаны стрелками). Найдены и начальные стадии развития этого таллома, представляющие собой что-то типа сдвоенных колец восьмерки

В заключении мне бы хотелось подчеркнуть, что отсутствие отработанных технологий в распознавании и описании того сложнейшего материала, который дают нам древнейшие осадочные отложения Земли, не останавливают исследователей. Правда, им приходится в каждом случае изобретать новые способы изучения остатков и доказательства своих гипотез. Соединение различных по морфологии форм в единый жизненный цикл вместо описания каждой формы отдельным «видом» может дать новое осмысление эволюционной последовательности и динамики разнообразия у грибов и водорослей.

 

1) К. Е. Наговицин. Биоразнообразие грибов на границе мезо- и неопротерозоя (лахандинская биота, восточная Сибирь) // Новости палеонтологии и стратиграфии. 2008. Том 49. Вып. 10–11. С. 147–151.

2) Т. Н. Герман, В. Н. Подковыров. О природе докембрийских микрофоссилий arctacellularia и glomovertella // Палеонтологический журнал. № 6. Ноябрь–декабрь 2008. С. 81–88.

 

Елена Наймарк


Дата добавления: 2018-11-24; просмотров: 110; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!