Заливка препаратов и изготовление срезов

Методы наблюдения

Обычно предметы, исследуемые под микроскопом, сами не светятся и, следовательно, нуждаются в постороннем освещении. Во многих случаях рассматриваемые предметы представляют собой тонкий срез прозрачного вещества и наблюдаются в проходящем свете. В системах с небольшой числовой апертурой (до 0.25) вполне достаточно рассеянного дневного света, отраженного под углом от вогнутого зеркала. В других случаях необходимо пользоваться искусственными источниками и специальными осветительными системами .

Структуру препарата, рассматриваемого через микроскоп, можно различить лишь тогда, когда частицы препарата отличаются друг от друга и от окружающей их среды по поглощению (отражению) света или по показателю преломления. Поэтому, в зависимости от характера препарата, в микроскопии применяются различные методы наблюдения.

Метод светлого поля

Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов, у которых различные участки структуры по-разному поглощают свет (тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и другие). Пучок лучей из осветительной системы проходит препарат и объектив и дает равномерно освещенное поле в плоскости изображения. Поглощающие элементы структуры препарата частично поглощают и отклоняют падающий на них свет.

Метод светлого поля в отраженном свете применяется для наблюдения непрозрачных объектов, к примеру, травленых шлифов металлов, биологических тканей и различных минералов. Освещение препарата производится сверху, через объектив, который одновременно выполняет и роль осветительной системы. Изображение, как и при проходящем свете, создается за счет того, что разные участки препарата неодинаково отклоняют

Метод темного поля

Метод темного поля в проходящем свете применяется в биологии, коллоидной химии, минералогии и других областях для получения изображений прозрачных, непоглощающих, а поэтому и не видимых при наблюдении в светлом поле объектов. Пучок лучей, освещающих препарат, непосредственно в объектив не попадает. Изображение создается только светом, который рассеивается мелкоструктурными элементами препарата. В поле зрения микроскопа на темном фоне видны светлые изображения мелких деталей, тогда как у крупных деталей видны только светлые края, которые рассеивают освещающие лучи.

Метод темного поля в отраженном свете осуществляется путем освещения препарата, например шлифа металла или биологической ткани, сверху с помощью специальной кольцевой зеркальной системы, расположенной вокруг объектива. Так же как и при проходящем свете, изображение создается только лучами, рассеянными объектом, тогда как лучи света, отразившиеся от поверхности объекта, в объектив не попадают.

Метод исследования в поляризованных лучах

Метод исследования в поляризованных лучах применяется в проходящем и в отраженном свете для так называемых анизотропных объектов, обладающих двойным лучепреломлением или отражением. Такими объектами являются многие минералы, угли, некоторые животные и растительные ткани и клетки, искусственные и естественные волокна.

При исследовании анизотропных препаратов к обычной схеме микроскопа перед осветительной системой добавляют поляризатор, а после объектива – анализатор, находящиеся в скрещенном либо параллельном положении относительно друг друга. При скрещенных поляризаторе и анализаторе в темном поле зрения микроскопа видны темные, светлые или окрашенные анизотропные элементы объекта. Вид этих элементов зависит от положения объекта относительно плоскости поляризации и от величины двойного лучепреломления. Более точное определение оптических данных объекта делается с помощью различных компенсаторов (неподвижных кристаллических пластинок, подвижных клиньев и пластинок).

Метод фазового контраста

Метод фазового контраста дает возможность получать контрастные изображения прозрачных и бесцветных объектов. К числу таких объектов относятся, например, неокрашенные биологические препараты, нетравленые шлифы металлов и минералогические объекты. Темные и светлые места в фазово-контрастном изображении соответствуют различным показателям преломления в препарате.

Принцип действия метода основан на том, что незаметные для глаза изменения фазы пучка, прошедшего через объект, можно преобразовать в видимое изменение интенсивности. На пути лучей, не отклоненных из-за дифракции на объекте, располагается так называемая «фазовая пластинка», увеличивающая разность фаз до половины длины волны. Таким образом, лучи могут интерферировать, и прежде не видимый объект проявляется на темном или светлом фоне.

                    5 флюорисцентная микроскопия

Флюоресцентная (люминесцентная) микроскопия (см. Люминесцентная микроскопия), основанная на регистрации флюоресцирующих веществ, дает возможность наблюдать клетки и ткани при освещении (возбуждении) ультрафиолетовыми или сине-фиолетовыми лучами. Люминесцентный микроскоп со стеклянной оптикой позволяет наблюдать флюоресценцию в видимой части спектра, ультрафиолетовый флюоресцентный микроскоп с кварцевой оптикой используется для изучения невидимой ультрафиолетовой флюоресценции путем ее фотографической или фотоэлектрической регистрации. С помощью люминесцентных микроскопов можно наблюдать собственную флюоресценцию содержащихся в тканях веществ, напр, витаминов А, В2, некоторых пигментов. В ультрафиолетовой области флюоресцируют, напр., содержащие триптофан белки. Наибольшее распространение, однако, получило использование специальных флюоресцентных красителей (см. Флюорохромы). Флюорохромы применяют в небольших концентрациях (1 : 10 000, 1 : 100 000), что позволяет широко использовать их для прижизненных наблюдений клеток и тканей. Интенсивность и спектры флюоресценции могут быть измерены (микрофлюорометрия), т. е. может быть получена и количественная, и качественная характеристика флюоресцирующих в клетке веществ. Флюоресцентные микроскопические методы широко используются не только для прижизненных наблюдений; они нашли применение в гистохимии, в иммуноморфологии (метод флюоресцирующих антител Кунса (см. Иммунофлюоресценция). Большие возможности для прижизненных наблюдений дает метод контактной флюоресцентной микроскопии (E. М. Брумберг, 1964), позволяющий получать изображения с поверхности органов и тканей. При этом используются специальные объективы, выполняющие одновременно роль опак-иллюминатора и конденсора.

5. Ультрафиолетовая микроскопия основана на абсорбции ультрафиолетовых лучей хим. структурами клеток (белки, нуклеиновые к-ты). Этот метод применим для прижизненных наблюдений, однако наибольшее распространение он нашел в количественной цито- и гистохимии — метод абсорбционной цитоспектрофотометрии (см. Цитофотометрия).

Способом улучшения условий микроскопического наблюдения над живыми объектами является прижизненное окрашивание их специальными красителями (см. Витальная окраска), позволяющее изучить детали строения микроскопических объектов и исследовать некоторые их физиол, свойства.

Несмотря на наличие многочисленных методов витальной микроскопии и на их большое значение, наиболее полную картину строения клеток и тканей можно получить при параллельном изучении живых и фиксированных объектов. Исследование фиксированных объектов дает возможность изучать структуру клеток и тканей неживых объектов.

Фиксация — сохранение структуры клеток тканей и микроорганизмов путем быстрого воздействия на них хим. или физ. агентами, предотвращающими развитие посмертных изменений; привнесение артефактов при этом минимальное. Некоторые методы фиксации (см.) позволяют в известной степени сохранить и хим. структуру клеток и тканей. Выбор способа фиксации зависит от задач исследования и особенностей объектов. Так, при исследовании клеточных ядер и хромосом обычно используют кислые фиксаторы. При исследовании ферментативной активности применяют ацетон (см.), формальдегид (см. Муравьиный альдегид) или глютаральдегид, вызывающие минимальную денатурацию белка и сохраняющие многие ферментные системы.

Большинство фиксаторов применяют в виде р-ров, действующих гл. обр. на белковые компоненты клеток и тканей. Входящие в состав фиксирующих смесей вещества (формальдегид, сулема и т. д.) образуют прочные связи между белковыми молекулами. Так, формальдегид реагирует с аминами, карбоксильными и индольными группами белка, в результате чего между белковыми молекулами образуются метиленовые мостики; сулема действует на сульфгидрильных, карбоксильные и аминогруппы белка, образуя ртутные мостики между белковыми молекулами. Соли хрома вызывают окисление и осаждают белки и фосфолипиды. Широкое распространение получили фиксаторы, содержащие пикриновую к-ту. Одним из лучших фиксаторов для исследования цитол, объектов является четырехокись осмия (OsO4), часто используемая для фиксации объектов, подвергающихся электронной микроскопии (см.).

При выборе фиксирующих смесей необходимо учитывать проницаемость ткани для разного вида фиксаторов. В случае медленного проникновения фиксатора в тканях могут развиться деструктивные изменения, связанные с аутолитическим действием ферментов, аноксией и т. п. Плохо проникает в фиксируемую ткань, напр., четырехокись осмия. Поэтому в р-рах осмия фиксируют кусочки тканей толщиной не более 0,5—1,0 мм. При проведении гистохим. исследований (см. Гистохимические методы исследования) необходимо знать, как влияет та или иная фиксирующая смесь на различные хим. компоненты клеток и тканей. Так, для исследования растворимых соединений используют методы замораживания-высушивания (см. Высушивание, Лиофилизация), а также замещения в замороженном состоянии. Лиофилизации состоит в быстром замораживании ткани (обычно используют жидкий азот) и ее обезвоживании (сушке) в вакууме при t° —30—40°. При методе замещения в замороженном состоянии замороженные при температуре жидкого азота ткани затем выдерживают при t° —20—60° в реактиве, растворяющем кристаллы льда (этиловый и метиловый спирт, ацетон). Оба названных метода позволяют сохранить хим. состав клеток и тканей практически неизмененным.

По окончании фиксации кусочки обычно промывают в воде или спирте. Твердые компоненты, имеющиеся в ткани (кость, хитин, отложения извести и др.), размягчают воздействием к-т или с помощью постоянного электрического тока — так наз. электролитическая декальцинация (см.) и после удаления из ткани к-ты приступают к изготовлению постоянных препаратов. Для изучения фиксированных объектов применяют многочисленные методы светооптической и электронной микроскопии.

В гистол, технике использование тотальных препаратов (мазки, отпечатки, пленочные препараты и т. п.) ограничено, и обычно приходится прибегать к изготовлению срезов тканей с помощью микротомов (см. ниже). Наиболее удобным способом, обеспечивающим быстрое изготовление срезов, является замораживание кусочка ткани. Однако при этом трудно получить достаточно тонкие срезы. Метод замораживания нельзя применять при работе с очень мелкими объектами; срезы некоторых тканей и органов крошатся и при оттаивании распадаются и т. д., в связи с этим ряд объектов приходится заливать в среды.

Заливка препаратов и изготовление срезов

Чаще прибегают к заливке объекта исследования в соответствующую среду, к-рая его пропитывает и уплотняет до консистенции, пригодной для изготовления срезов. Из сред для заливки наибольшее распространение получили парафин и целлоидин. Фиксированную ткань обезвоживают и пропитывают одним из этих веществ, проводя ее через промежуточный растворитель (ксилол или толуол для парафина, спирт-эфир — для целлоидина). Примерная схема заливки в парафин следующая. Кусочек ткани обезвоживают, проводя через ряд р-ров спирта возрастающей крепости (от 40 до 100%), затем помещают в смесь 100% спирта и ксилола (1 : 1), в ксилол (две порции), в смесь ксилола с парафином (1:1, при t° 37°), в чистый парафин (две порции, при t° 55—56°). Парафин быстро охлаждают, кусочек ткани с окружающим его парафином вырезают в виде так наз. блока. При заливке в парафин и изготовлении блоков можно пользоваться специальными рамками, позволяющими регулировать размер и форму блоков. Вместо ксилола можно использовать толуол, бензол, хлороформ, а также касторовое масло. В качестве промежуточной пропитывающей среды часто "используют диоксан, а для обезвоживания — бутиловый, изобутиловый или пропиловый спирты, амилацетат и т. п. Заливка в парафин позволяет получить достаточно тонкие, пригодные для световой микроскопии срезы (от 5—8 мкм и до 1—2 мкм). При заливке в целлоидин обезвоженный в спиртах кусочек органа или ткани переносят в смесь 100% спирта и эфира (1 : 1), после чего пропитывают спиртоэфирными р-рами целлоидина возрастающей концентрации (от 2 до 8%). Затем кусочек в виде блока в деревянных или пластмассовых рамках выдерживают в парах хлороформа до затвердевания целлоидина и помещают в 70% спирт, где препарат приобретает плотность хряща и может храниться долгое время. Целлоидиновые срезы легко режутся на микротоме и хорошо окрашиваются большинством красителей, однако толщина их больше, чем у парафиновых срезов. Иногда используют прием дополнительной заливки пропитанных целлоидином кусочков в парафин (заливка в целлоидин-парафин), что позволяет соединить преимущества обоих методов. Время обезвоживания, пропитывания в промежуточных и заливочных средах подбирают для каждого конкретного исследования. Все более широкое применение находят для заливки тканей синтетические смолы (аралдит, эпон и т. д.), особенно при изготовлении срезов для электронной микроскопии. Изготовленные срезы для дальнейшей обработки обычно наклеивают на предметные стекла. Замороженные и целлоидиновые срезы можно не наклеивать на предметные стекла, а переносить из одного р-ра в другой с помощью препаровальной иглы и т. п. Перед наклейкой парафиновых срезов на обезжиренные, чисто вымытые предметные стекла наносят тонкий слой смеси глицерина с куриным белком (1:1) и нагревают для денатурации белка. Затем в капле дист, воды на предметном стекле расправляют парафиновые срезы, слегка их подогревая. Избыток воды удаляют и стекла со срезами высушивают при t° 37—40° в термостате. Перед окраской или исследованием препаратов в неокрашенном виде из срезов удаляют парафин путем последовательного помещения препаратов в р-ры ксилола и спиртов понижающейся концентрации (от 100 до 40%). При использовании целлоидиновых срезов, как правило, не требуется специальных процедур удаления целлоидина — срезы проводят, минуя ксилол, через ряд спиртов понижающейся концентрации (вплоть до воды) и окрашивают.

Окрашивание фиксированных гистол. (цитол.) объектов служит для выявления (контрастирования) различных структур клеток и тканей, по-разному воспринимающих те или иные красители (см.) в зависимости от физ.-хим. свойств. Результаты окраски в значительной степени зависят от предшествующей обработки объекта (фиксации, заливки и т. п.). Гистол, окраска — сложный процесс, в к-ром играют роль многие физ.-хим. факторы, связанные со свойствами как красителя, так и окрашиваемого объекта. Гистол, красители классифицируют по источникам получения (натуральные и синтетические), по хим. строению (азокрасители, хинонимидные и т. д.), по способу использования (протравные и т. п.), возможности избирательно окрашивать объект (ядерные, цитоплазматические и т. п.) и по другим свойствам. По наиболее распространенной классификации красители подразделяют на основные, кислые, нейтральные и индифферентные. Основные красители представляют собой красящие основания или чаще их соли (метиленовый синий, толуидиновый синий, азуры, тионин, а также гематоксилин, бисмарк коричневый и др.). Окрашиваемые ими структуры называют базофильными (см. Базофилия). Интенсивность базофильной окраски зависит от числа кислотных групп, способных реагировать с красителем. Кислые (кислотные) красители — это красящие к-ты или их соли (пикриновая к-та, эозин, эритрозин, конгорот, лихтгрюн, оранж и т. д.). Окрашиваемые ими структуры называют ацидофильными (см. Ацидофилия), а также оксифильными или эозинофильными. К нейтральным красителям относятся смеси, содержащие как основные, так и кислые красящие компоненты, напр, смесь Романовского— Гимзы (см. Романовского-Гимзы метод) и др. Наконец, красящие свойства индифферентных красителей связаны с их способностью растворяться в определенных веществах. Так, напр., судан III или шарлах-рот хорошо растворяются только в жирах и вследствие этого избирательно окрашивают их в краснооранжевый цвет.

Способы (механизмы) окрашивания гистол, структур весьма многообразны. Существующие теории (химическая, электроколлоидальная, физико-химическая, обменной адсорбции) касаются какого-то одного из механизмов окрашивания, но не охватывают всего многообразия связывания красителей со структурами клеток и тканей.

От окраски в собственном смысле слова отличают импрегнацию (см.) — специальный метод выявления структур клеток и тканей, основанный на различной их способности удерживать или восстанавливать соли тяжелых металлов (напр., серебра, свинца, осмия, золота).

Методы современной цитологии

Цитохимия

Развитие микротехники активно способствовало накоплению данных о тонком клеточном строении. В конце XIX в., благодаря развитию методов специального окрашивания клеточных структур на световом уровне микроскопирования, были выявлены и описаны в клетках сетчатый аппарат Гольджи и митохондрии. Ближе к середине XX в. появились объемные научные издания, обобщающие достижения в этой области. Область цитологии, которая изучает содержание и распределение химических соединений внутри клетки, динамику их превращений в процессе жизнедеятельности, в том числе при патологии, стали называть цитохимией. Цитохимия широко используется и в настоящее время. Разработано громадное количество окрасочных приемов, выявляющих конкретные химические соединения в клетке, особенно с использованием люминесцентных микроскопов.

Методы цитохимии подразделяют на две большие категории. К первой категории относятся методы, основанные на использовании специфических красителей, взаимодействующих с конкретными химическими соединениями. Например, при окрашивании Суданом черным в клетках выявляются жиры в виде черных капель, тогда как ядра и структуры цитоплазмы останутся бесцветными (рис. 2.1).

Вторая категория методов цитохимии основана на проведении химической реакции непосредственно на срезе на предметном стекле. Суть реакции состоит в том, чтобы гидролизовать изучаемое химическое соединение так, чтобы образовались специфические реакционные группы, взаимодействующие с определенным красителем. Условия гидролиза для каждого соединения подбираются индивидуально. Например, обесцвеченное основание фуксина, взаимодействуя с альдегидными группами, образует прочное соединение, которое в присутствии сернистой кислоты окрашивается в красный цвет.

 

Рис. 2.1. Выявление жира в клетках печени аксолотля при окраске Суданом черным.

 

Классическим примером является реакция Фельгена на выявление ДНК. В этом случае гидролиз проводится в 1М соляной кислоте при длительном нагревании препарата. В результате реакции от молекулы ДНК отщепляются пуриновые азотистие основания – аденин и гуанин. На их месте на дезоксирибозе образуются свободные альдегидные группы, способные вступить в реакцию с красителем. Препарат после реакции помещают в раствор красителя. Связывание фуксина происходит строго количественно. После отмывания препарата в слабом растворе сернистой кислоты места локализации ДНК окрашиваются в красный цвет (рис. 2.2а). Такие препараты можно использовать для количественного определения ДНК в клетке.

Для выявления полисахарида гликогена, мономером которого является глюкоза, предметное стекло с тонкими срезами ткани помещают в раствор периодата калия (KIO4) и проводят гидролиз при комнатной температуре. Такая обработка приводит к разрушению гликогена в клетках с активацией альдегидных групп в молекуле глюкозы. Затем препарат окрашивают так же, как описано для реакции на ДНК. В этом случае окрасятся участки клеток, содержащие гликоген. Специфическим в данном случае является не краситель, а подбор соответствующей химической реакции, которая проводится непосредствено на цитологическом препарате (рис. 2.2б).

 

Рис. 2.2. Выявление ДНК по Фельгену (а) и гликогена после гидролиза в периодате (б) с помощью обесцвеченного основания фуксина. Клетки печени аксолотля.

 

С помощью цитохимических цветных реакций в клетках выявляют разнообразные полисахариды, специфические аминокислоты в белках, нуклеиновые кислоты, жиры, липиды и множество ферментов, участвующих в метаболических процессах обмена и превращения веществ. Ферменты обычно выявляют по наличию продуктов их активности.

В настоящее время широко используются флюоресцентные красители для специфического окрашивания биологических полимеров или клеточных органелл. Известны флюорохромы для выявления ДНК, РНК, липидов, миотохондрий и т. д. Флюоресцентная цитохимия активно развивается.

 

Вопросы

1. Что такое цитохимия?

2. Как можно окрасить ДНК в клетках?

3. Как выявляется в клетках гликоген? Жир?

Иммуноцитохимия

Ближе к концу XX в. цитохимия перешла на новый качественный уровень. Стало успешно развиваться новое направление цитохимии – иммуноцитохимия, которая в настоящее время является одним из самых передовых методов клеточной биологии. Для этого метода применяются люминесцентные микроскопы и красители флюорохромы.

При использовании для иммуноцитохимии флюорохромы химическим путем «сшивают» (конъюгируют) с антителами. Антитела имеют специфичность к определенному белку, который служит антигеном, и взаимодействуют не с любыми клеточными структурами, а только с теми участками клеток, где находится изучаемый белок. Таким образом, с помощью метода цитохимии можно изучать, какие специфические белки локализованы в тех или иных клеточных структурах.

Антитела, используемые в иммуноцитохимии, могут быть маркированы, помимо люминесцентных красителей, ферментами или электронно-плотными частицами. В такой модификации метода выявление специфических белков осуществляется с помощью электронного микроскопа.

С помощью метода иммуноцитохимии изучены состав и расположение элементов цитоскелета клеток растений и животных, характерные особенности цитоскелета опухолевых клеток. С помощью этого метода научились выявлять индивидуальность хромосом человека, что необходимо при изучении развития патологий, а также в судебной медицине. Метод иммуноцитохимии позволил выявить на поверхности разнообразных клеток индивидуальные маркеры, что облегчило понимание многих патологических процессов, позволило выяснить, какие клеточные типы являются отправной точкой в развитии ряда болезней. Например, показана роль макрофагов и гладкомышечных клеток кровеносных сосудов в развитии атеросклероза.

 

Вопросы

1. Для чего используется метод иммуноцитохимии?

2. В чем суть метода?

3. Что вы знаете о люминесцентном микроскопе?

Электронная микроскопия

Во второй половине XX в. стал активно использоваться новый метод микроскопирования, дающий в 100 раз большее разрешение биологических объектов по сравнению со световой микроскопией, – электронная микроскопия.

В электронном микроскопе изображение строится с помощью узкого пучка электронов, с высокой скоростью проходящего через срез ткани и взаимодействующего с ним. Электроны могут поглощаться срезом или отклоняться от исходного направления, в результате чего узкий пучок электронов будет рассеиваться. В качестве устройств, формирующих и фокусирующих поток электронов до взаимодействия со срезом ткани и после этого, используются мощные кольцевые электромагниты. Напряжение в колонне электронного микроскопа достигает 100 000 вольт. Изображение строится на люминесцентном экране, который дает свечение при взаимодействии с электронами. Вместо отображения объекта на светящемся экране его изображение можно зафиксировать на фотопластинке, что дает возможность получить фотоснимок. Для изучения биологических объектов пришлось разрабатывать новые методы приготовления препаратов.

Фиксируют ткани для электронной микроскопии глутаровым альдегидом, который «сшивает» белковые молекулы, и дофиксируют тетраоксидом осмия, который стабилизирует двуслойные липидные мембраны и дополнительно фиксирует тканевые белки. Для получения срезов образцы ткани пропитывают полимерными смолами, которые затвердевают, образуя твердый пластмассовый блок. С него на специальном приборе ультрамикротоме стеклянными или алмазными ножами делают очень тонкие срезы толщиной 50–100 нм; с одной клетки можно приготовить 100–200 срезов. Затем срезы пропитывают солями тяжелых металлов (урана, свинца, фосфорно-вольфрамовой кислоты) для увеличения контрастности изображения. Готовые срезы помещают на тонкую медную сеточку, ячейки которой покрыты прозрачной полимерной пленкой, и просматривают в электронном микроскопе.

Кроме срезов, под электронным микроскопом изучают крупные биологические молекулы, структуру мембран, белковые глобулы, поверхность клеточных органоидов. При изучении поверхности органоидов или молекулярных комплексов добиваются контрастного изображения различными приемами. Обычно она достигается за счет напыления под углом к поверхности объекта тонкого слоя золота или платины. Толщина слоя золота на поверхности соответствует структурным особенностям объекта. Некоторые участки объекта будут иметь более толстый слой напыления, в других местах напыление будет отсутствовать из-за образования теневой зоны. Поток электронов в микроскопе направлен перпендикулярно к поверхности объекта, что обеспечит выявление светлых и темных участков на изучаемой поверхности, так как в зависимости от толщины слоя напыления металла степень поглощения электронов будет изменяться.

Электронная микроскопия обусловила значительный прогресс в развитии цитологии. Была описана тонкая структура ядра, всех цитоплазматических органоидов: эндоплазматического ретикулума, аппарата Гольджи, всевозможных вакуолей, митохондрий, пластид, центриолей (рис. 5.1). Именно с помощью электронной микроскопии было показано, что двуспиральная молекула ДНК, выделенная из бактерий, имеет форму кольца.

Электронная микроскопия, в которой изображение строится с помощью потока электронов, проходящих через объект, называется трансмиссионной. Ее разрешающая способность для биологических объектов 2 нм при увеличении ×100 000, что примерно соответствует диаметру двойной спирали ДНК.

Помимо трансмиссионной электронной микроскопии существует растровая (сканирующая) электронная микроскопия, когда изображение строится с помощью электронного луча, отраженного с поверхности изучаемого объекта. Такие электронные микроскопы называются сканирующими. В микроскопе образец сканируется узким пучком электронов. Когда луч электронов попадает на образец, то поверхность образца, на которую нанесен тонкий слой золота, испускает «вторичные электроны». Они регистрируются прибором и преобразуются в изображение на телевизионном экране. Максимальное разрешение сканирующего микроскопа меньше, чем трансмиссионного, и составляет 10 нм для биологических объектов, а увеличение ×20 000. С помощью сканирующих микроскопов изучают внутренние поверхности кровеносных сосудов, поверхности клеток и небольших структур. Сканирующий микроскоп дает объемное изображение.

 

Вопросы

1. Какие типы электронных микроскопов вы знаете? Каково их разрешение?

2. Какие структуры можно увидеть в ядре и цитоплазме с помощью трансмиссионного электронного микроскопа?

3. В чем состоит принцип построения изображения в электронном микроскопе?

4. В чем особенности приготовления препаратов для электронной микроскопии?

Метод авторадиографии

Метод авторадиографии используют для выяснения, в каких местах в клетке идет синтез тех или иных полимерных молекул, для изучения, куда переносятся синтезированные вещества. Иначе метод называют радиоавтографией. Он может использоваться применительно и к световой, и к электронной микроскопии. Метод позволяет обнаруживать в клетке биологические полимерные молекулы, меченые радиоактивными изотопами. Ядра радиоактивных изотопов нестабильны, подвергаются распаду, испуская заряженные частицы или γ-лучи. Экспериментатор регистрирует этот радиоактивный распад на фотопленке.

Обычно в кровь животному вводится мономер биополимера, в котором один из атомов водорода замещен на радиоактивный тритий. Например, в состав молекулы ДНК входит нуклеотид тимидин. В молекуле тимидина один из атомов водорода замещают на тритий. Тимидин, распространяясь с кровью, будет включаться в те клетки, где в данный момент идет репликация ДНК. На окрашенных срезах тканей можно будет выявить клетки, находящиеся в S-фазе клеточного цикла. Для этого на окрашенный срез в темноте наносят обычную фотоэмульсию, которая при хранении препаратов засвечивается под действием энергии, излучаемой изотопами. После проявления фотоэмульсии над клетками, находящимися в S-фазе клеточного цикла, появляются черные гранулы восстановленного серебра, образующиеся в фотоэмульсии.

Именно так в 60-е гг. XX в. было показано, что в составе нейронов головного мозга, в некоторых его отделах, возможна репликация ДНК. Но в то время было трудно представить, что в головном мозге млекопитающих присутствуют стволовые клетки, способные к делению. Тогда предположили, что репликация ДНК в нейронах головного мозга связана с процессом памяти.

Именно методом авторадиографии было показано, что ДНК всегда находится в ядре и никуда оттуда не выходит. РНК, напротив, синтезируется в ядре, а затем выходит в цитоплазму. Белок никогда не синтезируется в ядре. Место синтеза белка – рибосомы цитоплазмы. Отсюда белок может перемещаться и в ядро, и внутрь органелл цитоплазмы.

В заключение следует отметить, что каждый метод имеет свои преимущества и недостатки. Исследователь должен использовать несколько взаимодополняющих методов, чтобы сделать окончательный вывод.

 

Вопросы

1. Для чего используется метод авторадиографии?

2. В чем суть метода?

3. Какие результаты получены с помощью этого метода?

Фракционирование клеток

С середины XX в. цитологи получили возможность исследовать не только целые клетки, но и отдельные органоиды, выделенные из клеток в жизнеспособном состоянии. Для этого используется метод фракционирования клеток, основанный на дифференциальном центрифугировании.

Для получения образцов органоидов фрагменты ткани разрушают таким образом, чтобы клеточные структуры остались неповрежденными. С этой целью подбирают подходящие условия гомогенизации, т. е. разрушения клеток, подходящую среду для выделения клеточных структур, буфер для поддержания определенного рН, в процессе выделения поддерживают низкую температуру, близкую к нулю. В результате получают суспензию клеточных органоидов, которая содержит ядра, митохондрии, лизосомы, аппарат Гольджи, фрагменты эндоплазматического ретикулума, рибосомы и обрывки клеточных мембран. Суспензию начинают центрифугировать на специальных приборах – центрифугах. Разные органоиды осаждаются на дно пробирки при разных скоростях центрифугирования. Скорость оседания зависит от размера частицы и ее плотности. При низких скоростях центрифугирования в первую очередь осаждаются ядра. Получив осадок ядер, оставшуюся суспензию переливают в другую пробирку для следующего этапа центрифугирования. Осадок, состоящий из клеточных ядер, размешивают и используют в экспериментальной работе. Так повторяют несколько раз, увеличивая скорость и продолжительность центрифугирования. Самые высокие скорости центрифугирования необходимы для получения самых маленьких органелл – рибосом. Ядра осаждаются на дно пробирки при центрифугировании в течение двух минут с ускорением 2000 g. Осадок митохондрий получают через 30 минут центрифугирования с ускорением 15 000 g, а рибосомы собирают через 3 часа центрифугирования с ускорением 40 000 g.

С помощью этого метода впервые в клетках были открыты лизосомы – небольшие вакуоли, содержащие гидролитические ферменты и выполняющие пищеварительные функции в клетках. После открытия лизосом методом фракционирования, их обнаружили на срезах клеток под световым и электронным микроскопом с помощью метода цитохимии, выявив работу специфических ферментов.

Возможность получения чистых фракций отдельных органоидов позволила изучить их химический состав, набор ферментов и, в конечном итоге, понять, как работает та или иная клеточная структура.

 

Вопросы

1. Что такое гомогенизация клеток?

2. Почему разные органоиды клетки при центрифугировании осаждаются на дно не одновременно?

3. Какие клеточные органоиды были открыты именно с помощью метода фракционирования клеток?

Метод клеточных культур

Обычно лаборатории, занимающиеся изучением биологии клетки, имеют в своем арсенале несколько методов. Метод клеточных культур обязательно есть в их числе.

В начале XX в. французский ученый А. Каррель установил, что в асептических условиях клетки многоклеточного организма могут расти в искусственной питательной среде в течение длительного времени. В настоящее время известно, что большинство видов клеток растений и животных в благоприятных условиях способны не только жить и размножаться вне организма, но и дифференцироваться, приобретая важные черты специализации. Например, клетки сердечной мышцы в клеточной культуре могут сокращаться.

Для получения клеточной культуры небольшие кусочки ткани диссоциируют на отдельные клетки, используя ферментативную и механическую обработку, и получают суспензию клеток. Затем клетки помещают в специальные сосуды с плоским дном: стеклянные или пластиковые, и заливают искусственной питательной средой. Для каждого типа клеток среда индивидуальна. Для большинства животных клеток питательная среда имеет в своем составе глюкозу, незаменимые аминокислоты, витамины и небольшой процент сыворотки крови. Важно поддерживать нейтральную реакцию среды, оптимальную температуру, не допускать инфекционного заражения. В таких условиях клетки осаждаются на дно сосуда культивирования, прикрепляются к стеклу, распластываются на нем, приобретают характерную для них форму и начинают делиться. Через несколько суток вся поверхность дна сосуда становится заполненной клетками. Наступает момент контактного торможения, клетки прекращают делиться. Нормальные клетки могут в течение некоторого времени сохранять жизнеспособность в таком покоящемся состоянии. Для дальнейшего культивирования их собирают из первого сосуда и переносят в несколько других сосудов в тех же условиях. Цикл повторяется заново. Так получают перевиваемые клеточные культуры.

Именно с помощью метода клеточных культур впервые были описаны особенности опухолевых клеток. Первая особенность – способность к бесконечному делению. В 50-е гг. XX в. была получена перевиваемая клеточная культура раковых клеток опухоли молочной железы. Культура получила название HeLa по первым буквам имени оперированной пациентки. Эти клетки живы до сих пор, и с ними работают во многих лабораториях мира. За прошедшие годы ученые вырастили тонны этих клеток, хотя самой пациентки давно уже нет в живых.

Другая особенность раковых клеток: они не прекращают делиться, заполняя всю поверхность сосуда. Клетки наползают друг на друга, могут образовывать второй и третий слой.

Нетрансформированные нормальные клетки могут делиться ограниченное количество раз. Такую культуру нельзя поддерживать бесконечно долго. После нескольких пересевов клетки перестают делиться и погибают.

Работа с клеточными культурами дает большие возможности для исследователей. На ранних этапах развития цитологии клеточные культуры использовали для визуального наблюдения за живыми клетками. Изучали процессы митоза, движения клеток, образования контактов между клетками. Сейчас на клеточных культурах изучают процессы дифференцировки, получают перевиваемые клеточные линии стволовых эмбриональных клеток. Клеточные культуры используют для моделирования различных патологических состояний: ишемии, химического или гормонального стресса, для переноса чужеродной генетической информации и т. д. Клеточные культуры находят широкое практическое применение для получения специфических антител, ферментов, факторов регуляции жизнедеятельности клеток, их используют при разработке вакцин.

Из клеточных культур растений можно вырастить целые организмы, поэтому их используют для создания новых сортов растений, обладающих важными для человека свойствами.

 

Вопросы

1. Как получают перевиваемые клеточные культуры?

2. Какие особенности раковых клеток были изучены в клеточной культуре?

3. Для чего используются клеточные культуры?

Основные методы окрашивания

Красители применяемые в цитологии, являются солями двух типов: 1) кислые красители – это те, у которых ион, придающий окраску (хромофор), является анионом (примером может служить эозин); 2) основные красители – те, у которых роль хромофора играет катион (примером может служить метиленовый синий).

Красители первого типа являются кислыми потому, что хромофор, будучи кислотой, при образовании придающей окраску соли, связывается с основанием (NaOH).

Красители второго типа называются основными потому, что хромофор, будучи основанием, при образовании соли связывается с кислотой (HCl)/

Как правило, кислые красители связываются более интенсивно с цитоплазменными (основными) компонентами клетки, а основные – с ядерными (кислыми).

Действие некоторых красителей не зависит от образования солей или других химических соединений с окрашиваемым материалом. Они просто покрывают поверхность, адсорбируясь, растворяясь или осаждаясь в материале.

В процессе окрашивания играют роль как физические, так и химические факторы

Существуют простые и сложные методы окрашивания микропрепаратов.

Сложные методы. Включают последовательное нане­сение на препарат красителей, различающихся по химическому составу и цвету, протрав и дифференцирующих веществ. Это позволяет выявить определенные структуры клеток и дифференцировать одни виды микроорганизмов от других.

1. Окраска по Цилю- Нельсену. Применяется для выявления кислото- и спиртоустойчивых микобактерий туберкулеза, лепры и некоторых актиномицетов, которые из-за большого количества в клеточных оболочках липилов, воска и оксикислот непроницаемы дл: разведенных растворов красителей. Окрашивание их достигается, при помощи фенолового фуксина Циля с подогреванием над пламенем горелки до закипания и отхождения паров. Окрашенные с применением термокислотной обработки кислотоустойчивые бактерии не обесцвечиваются слабыми растворами минеральных кислот и спирта. Кислоустойчивые бактерии окрашиваются в интенсивно красный цвет, остальные виды микробов, обесцвечивающиеся в процессе обработки препарата кислотой, - в светло-синий цвет.

2. Окраска по Романовскому-Гимзе Осуществляется сложным красителем (в его состав входят метиленовый синий, эозин и азур), в результате он окрашивает бактерии (спирохеты), простейшие и форменные -элементы крови в различные цвета и оттенки. Так, под его воздействием цитоплазма простейших приобретает голубой цвет, а ядра - красный: боррелии окрашиваются в сине-фиолетовый цвет, а трепонемы и лептоспиры - в слабо-розовый; эритроциты - в розовый цвет, ядра лейкоцитов - в фиолетовый, а их цитоплазма - в голубой (базофильная зернистость - в синий, эозинофильная - н красный, нейтрофильная - в сиреневый).

3. Окраска по Граму.

Из-за неодинакового содержания пептидогликана (ПГ) в оболочках разных прокариот метод дает возможность подразделять их на грамположительные (фиолетовые, 90 % ПГ) и грамотрицательные (розовые, 5-20 % ПГ) В соответствии с этим, во-первых, в царстве прокариот выделяют четыре раздела: 1. тонкостенные, грамотрицательные. 2. толстостенные, грамположительные. 3. лишенные стенок. 4. дефектные стенки, отсутствие пептидогликана. Во-вторых, окраска по Граму позволяет также установить родовую и видовую принадлежность многих возбудителей инфекционных болезней. Например, известно, что все болезнетворные кокки (кроме гонококка и менингококка), бациллы и клостридии являются грамположительными. а энтеробактерии, вибрионы, трепонемы - грамотрицательными.

Техника окраски по Граму:

1) Наносим на фиксированный мазок через фильтровальную бумажку раствор генцианвиолетта на 2-3 минуты. У грам+ м/о генцианвиолет проникает вглубь клеточной стенки и образует прочный комплекс с трихоевыми кислотами и Mgниевыми солями РНК, у грам- краситель проникает в в клеточную стенку.

2) Промываем водой – для удаления излишков красителя

3) Наносим раствор Люголя на 1 минуту – для удаления остатков влаги и укрепления образовавшейся связи у грам+.

4) Сливаем, не промывая водой.

5) Наносим раствор этилового 96% спирта на 30 секунд, равномерно покачиваем для отхождения фиолетовых пятен. Из грам- вымывается краситель.

6) Промыть под водой

7) Наносим раствор фуксина на 2-3 минуты для окраски обесцветившихся грам- м/о

8) Промыть водой

-> грам- - красные, грам+ - синие.

 

                                                                                                      

4. ОКРАСКА ГЕМАТОКСИЛИНОМ – ЭОЗИНОМ

Эта окраска является двойной: гематоксилин - основной краситель - окрашивает ядра клеток, эозин - кислый краситель - красит протоплазму клеток и в меньшей степени - различные неклеточные структуры.

Окраска включает использование основного красителя гематоксилина, окрашивающего базофильные клеточные структуры ярко-синим цветом, и спиртового кислого красителяэозина Y, окрашивающего эозинофильные структуры клетки красно-розовым цветом. Базофильные структуры, как правило, это те, которые содержатнуклеиновые кислоты(ДНКиРНК):клеточное ядро,рибосомыи РНК-богатые участкицитоплазмы. Эозинофильные структуры содержат внутри- и внеклеточныебелки, например,тельца Леви. Цитоплазма является эозинофильной средой.Эритроцитывсегда прокрашиваются ярко-красным цветом.

2.

 

 


Дата добавления: 2018-11-24; просмотров: 348; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!