Нормативные и расчетные сопротивления



Раздел 2. Работа элементов металлических конструкций и основы расчета их надежности  

Основные понятия и определения. Понятие о методике допускаемых напряжений

Проектирование металлических конструкций представляет собой многоэтапный процесс, включающий в себя выбор конструктивной формы, расчет и разработку чертежей для изготовления и монтажа конструкций.

Целью расчета — второго основного этапа проектирования металлических конструкций — является строгое обоснование габаритных размеров конструкций, а также размеров поперечных сечений элементов и их соединений, обеспечивающих заданные условия эксплуатации в течение всего срока с необходимой надежностью и долговечностью при минимальных затратах материалов и труда на их создание и эксплуатацию. Эти требования часто противоречат друг другу (например, минимальный расход металла и надежность), поэтому реальное проектирование является процессом поиска оптимального конструктивного решения.

Расчет обычно состоит из следующих этапов: установление расчетной схемы, сбор нагрузок, определение усилий в элементах конструкций, подбор сечений и проверка допустимости напряженно-деформированного состояния конструкции в целом, ее элементов и соединений.

Главная особенность расчетов строительных конструкций заключается в необходимости учета изменчивости внешних воздействий, разброса прочностных характеристик материала и особенностей работы металла в конкретных условиях. Внешние воздействия здесь понимаются в широком смысле. Это могут быть силовые воздействия технологического и атмосферного происхождения, химическое воздействие, вызывающее коррозию металла, температурное воздействие, влияющее на его прочностные свойства, смещения опор и т.д.

В зависимости от способа учета изменчивости отмеченных параметров развивалась методика расчета МК. До 1995 г. в нашей стране МК рассчитывались по методике допускаемых напряжений, в которой использовался единый коэффициент запаса, учитывающий изменчивость названных параметров.

Достоинством методики допускаемых напряжений является простота, но эта методика недостаточно точно учитывает факторы, влияющие на работу конструкции.

Отношение нормативного предела текучести к коэффициенту запаса называется допускаемым напряжением:

.

В формуле слева стоит напряжение в конструкции от нормативной нагрузки, справа – нормативный предел текучести. Это неравенство рассматривает конструкцию в нормальных условиях эксплуатации, а необходимая надежность обеспечивается коэффициентом запаса. В среднем k = 1,5.

В методике предельных состояний коэффициент запаса разделен на несколько коэффициентов, каждый из которых учитывает строго определенное физическое явление и может быть обоснован математическими методами.

 

2.2 Основы методики расчета металлических конструкций по предельным состояниям

Цель расчета строительных конструкций - обеспечить заданные условия эксплуатации и необходимую прочность при минимальном расходе материалов и минимальной затрате труда на изготовление и монтаж.

Строительные конструкции рассчитывают на силовые и другие воздействия, определяющие их напряженное состояние и деформации, по предельным состояниям.

Метод расчета по предельным состояниям впервые был разработан в Советском Союзе в 50-е годы. Целью метода является не допускать с определенной обеспеченностью наступления предельных состояний при эксплуатации в течение всего заданного срока службы конструкции здания или сооружения.

Предельные состояния – это такие состояния, при которых конструкции перестают удовлетворять заданным эксплуатационным требованиям или требованиям при производстве работ.

В расчетах конструкций на действие статических и динамических нагрузок и воздействий, которым они могут подвергаться в течение строительства и заданного срока службы, учитываются следующие предельные состояния:

первой группы— по потере несущей способности и (или) полной непригодности к эксплуатации конструкций;

второй группы — по затруднению нормальной эксплуатации сооружений.

К предельным состояниям первой группы относятся:

· общая потеря устойчивости формы;

· потеря устойчивости положения; разрушение любого характера;

· переход конструкции в изменяемую систему;

· качественное изменение конфигурации;

· состояния, при которых возникает необходимость прекращения эксплуатации в результате текучести материала, сдвигов в соединениях, ползучести, недопустимых остаточных или полных перемещений или чрезмерного раскрытия трещин.

Первая группа по характеру предельных состояний разделяется на две подгруппы: по потере несущей способности (первые пять состояний) и по непригодности к эксплуатации (шестое состояние) вследствие развития недопустимых по величине остаточных перемещений (деформаций).

К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию (нормальной считается эксплуатация, осуществляемая без ограничений и без внеочередного ремонта) или снижающие долговечность вследствие появления недопустимых перемещений (прогибов, осадок, углов поворота, колебаний, трещин и т. п.).

Предельные состояния первой группы проверяются расчетом на максимальные (расчетные) нагрузки и воздействия, возможные при нарушении нормальной эксплуатации, предельные состояния второй группы — на эксплуатационные (нормативные) нагрузки и воздействия, отвечающие нормальной эксплуатации конструкций.

Надежность и гарантия от возникновения предельных состояний конструкции обеспечиваются надлежащим учетом возможных наиболее неблагоприятных характеристик материалов; перегрузок и наиболее невыгодного (но реально возможного) сочетания нагрузок и воздействий; условий и особенностей действительной работы конструкций и оснований; надлежащим выбором расчетных схем и предпосылок расчета, учетом в необходимых случаях пластических и реологических свойств материалов.

Это условие для первой группы предельных состояний по несущей способности может быть записано в общем виде

N < S,

где N — усилие, действующее в рассчитываемом элементе конструкции;

S - предельное усилие, которое может воспринять рассчитываемый элемент.

Поскольку расчетом должна быть обоснована возможность нормальной эксплуатации конструкции в течение всего заданного срока ее службы, значение N неравенства должно представлять собой наибольшее возможное за это время усилие (воздействие). Усилие N определяется от расчетных нагрузок Fi,представляющих собой возможные наибольшие или наиболее часто повто­ряющиеся нагрузки. Эти нагрузки определяют умножением нормативных нагрузок Fin, отвечающих условиям нормальной эксплуатации, на коэффициенты надежности по нагрузке γf, учитывающие возможное отклонение нагрузок в неблагоприятную сторону (большую или меньшую), и на коэффициент надежности по назначению γn, учитывающий степень ответственности, зданий и сооружений.

При одновременном действии двух или нескольких временных нагрузок расчет конструкций по первой и второй группам предельных состояний выполняется с учетом наиболее неблагоприятных сочетаний нагрузок или усилий.

Вероятность совместного действия нескольких нагрузок учитывают умножением нагрузок или вызываемых ими усилий на коэффициент сочетаний ψ.

Несущая способность – предельное усилие S, которое может воспринять рассчитываемый элемент определяется умножением геометрической характеристики сечения А (площади) на расчетное сопротивление Ry и коэффициент условий работы γс.

Расчетное сопротивление Ry получают делением нормативного сопротивления по пределу текучести Ryn или временному сопротивлению разрыву Run на коэффициент надежности по материалам γm, учитывающий выборочный характер контроля и возможность попадания в конструкцию металла с пониженными характеристиками.

Итак, для первой группы предельных состояний по прочности предыдущее выражение может быть записано:

,

или

,

где γb = 1,3 – коэффициент надежности для элементов конструкций, рассчитываемых по временному сопротивлению.

Для второй группы предельных состояний предельное условие может быть записано в виде:

,

где f – перемещение конструкции (функция нагрузок);

[f] – предельное перемещение, допустимое по условиям эксплуатации.

 

2.3 Классификация нагрузок и их сочетаний

Постоянные нагрузки — собственная масса несущих и ограждающих конструкций, давление грунта, предварительное напряжение.

Временные длительные нагрузки — масса стационарного технологического оборудования, масса складируемых материалов в хранилищах, давление газов, жидкостей и сыпучих материалов в соответствующих емкостях и т.п.

Кратковременные нагрузки — нормативные значения нагрузок от снега, ветра, подвижного подъемно-транспортного оборудования, массы людей, животных и т.п.

Полезными обычно называют нагрузки, восприятие которых составляет целевое назначение сооружений, например, масса людей для пешеходного моста. Они могут быть как временными, так и постоянными, например, масса экспоната монументального выставочного сооружения является постоянной полезной нагрузкой для постамента. В этом же смысле для фундамента масса всех вышележащих конструкций представляет собой также полезную нагрузку.

Особые нагрузки — сейсмические воздействия, взрывные воздействия, нагрузки, возникающие в процессе монтажа конструкций, нагрузки, связанные с поломкой технологического оборудования и резким нарушением технологического процесса, воздействия, обусловленные деформациями основания в связи с коренными изменениями структуры грунта (замачивание просадочных грунтов, осадка грунтов в карстовых районах и над подземными выработками).

Снеговая нагрузка.

Полное нормативное значение снеговой нагрузки на горизонтальную проекцию покрытия определяют по формуле

,

где sо - нормативное значение веса снегового покрова на 1 м2 горизонтальной поверхности земли.;

μ - коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие.

Значения коэффициента μзависят от очертания покрытия и приведены в нормах на проектирование.

Ветровая нагрузка устанавливается на основании данных гидрометеорологических станций о скорости ветра на высоте 10 м от поверхности земли.

Полная ветровая нагрузка wz на высоте z над поверхностью земли определяют по формуле:

,

где w0 - нормативное значение ветровой нагрузки на высоте 10 м, зависящее от ветрового района;

k - коэффициент, учитывающий изменение ветрового давления по высоте и тип местности;

с – аэродинамический коэффициент.

При действии на конструкцию нескольких видов нагрузок усилия в ней определяются при самых неблагоприятных сочетаниях с использованием соответствующих коэффициентов сочетаний y.

В соответствии со СНиП 2.01.07-85 «Нагрузки и воздействия» различают:

основные сочетания, состоящие из постоянных и временных нагрузок;

особые сочетания, состоящие из постоянных, временных и одной из особых нагрузок.

При основном сочетании, включающем только одну временную нагрузку, коэффициент сочетания y = 1. При большем числе учитываемых временных нагрузок последние умножаются на коэффициенты сочетаний y<1, значения которых регламентируются СНиПом или специальными условиями проектного задания.

В особых сочетаниях временные нагрузки учитываются с коэффициентом сочетаний y< 1, а особая нагрузка — с коэффициентом y = 1. Во всех видах сочетаний постоянная нагрузка имеет коэффициент y= 1.

 

Нормативные и расчетные сопротивления

Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления Ryn и Run. Нормативные сопротивления устанавливают на основе статистической обработки показателей механических свойств материалов.

Для углеродистой стали и стали повышенной прочности за основную характеристику нормативного сопротивления принято значение предела текучести, т.к. при напряжениях, равных пределу текучести, в растянутых, изгибаемых и других элементах начинают развиваться пластические деформации, а сжатые элементы начинают терять устойчивость. Для высокопрочных сталей, не имеющих ярко выраженной площадки текучести, или когда значения показателей текучести близко подходят к временному сопротивлению, за нормативное сопротивление принимают значение временного сопротивления. Таким образом, установлены два вида нормативных сопротивлений: по пределу текучести  и временному сопротивлению .

Расчетные сопротивления материала Ry и Ru определяют делением нормативного сопротивления на коэффициент надежности по материалу γm:

; .

Коэффициент надежности по материалу γm. Коэффициент надежности по материалам установлен на основании анализа кривых распределений результатов испытаний стали и ее работы в конструкции и его значения находятся в пределах 1,025 … 1,15.

Коэффициент надежности по назначению γn. Вводится в зависимости от класса ответственности зданий и сооружений:

для основных зданий и сооружений объектов, имеющих особо важное народнохозяйственное значение и (или) социальное значение – 1,0;

для зданий и сооружений объектов, имеющих важное народнохозяйственное значение и (или) социальное значение – 0,95;

для зданий и сооружений объектов, имеющих ограниченное народнохозяйственное значение и (или) социальное значение – 0,9.

На коэффициент надежности по назначению умножается расчетное значение нагрузок, усилий или иных воздействий.

 

2.5 Виды напряжений и их учет в расчете элементов стальных конструкций

Напряжения в зависимости от вида подразделяются на основные, дополнительные, местные и начальные.

Основные напряжения - напряжения, определяемые от внешних воздействий методами, излагаемыми в курсе сопротивления материалов. Основные напряжения определяются по усилиям, установленным для принятой идеализированной расчетной схемы (например, в решетчатых конструкциях—фермах и др., исходя из шарнирного вместо практически жесткого сопряжения стержней в узлах, иногда без учета пространственной работы системы в целом и т. п.), без учета местных, дополнительных и внутренних напряжений.

Поскольку основные напряжения уравновешивают внешние воздействия и определяют несущую способность элементов конструкций, они и выявляются расчетом и по ним в основном судят о надежности конструкций.

Дополнительные напряжения - напряжения, возникающие в результате дополнительных связей по отношению к принятой идеализированной расчетной схеме (например, из-за жесткости узлов, дополнительных систем связей и т. п.). Дополнительные напряжения, определимые методами строительной механики, при пластичном материале не оказывают существенного влияния на несущую способность конструкции.

Местные напряжения могут быть двух видов:

в результате внешних воздействий;

в местах резкого изменения или нарушения сплошности сечения, где вследствие искажения силового потока происходит концентрация напряжений.

В первом случае местные напряжения уравновешиваются с внешними воздействиями, во втором - они внутренне уравновешены.

К местным напряжениям, возникающим из-за внешних воздействий, относятся напряжения в местах приложения сосредоточенных нагрузок - на опорах, в местах опирания каких-либо других конструкций (рис. а),под катками мостовых кранов в подкрановых балках (рис. б), в местах крепления вспомогательных элементов. Местные напряжения могут привести к развитию чрезмерных пластических деформаций, трещин или к потере устойчивости в тонких элементах сечений (например, стенки двутавра).

Рис. Местные напряжения

а - в местах приложения сосредоточенных нагрузок; б - под катком крана

 

Начальные напряжения . Начальными называются напряжения, которые имеются в ненагруженном внешней нагрузкой элементе и которые появились в нем в результате неравномерного остывания после прокатки или сварки или в результате предшествующей работы элемента и его пластической деформации, поэтому они называются также внутренними, собственными или остаточными. Начальные напряжения всегда уравновешены, поэтому эпюры их двузначны.

Начальные напряжения, складываясь с напряжениями, вызванными внешней нагрузкой, приводят к тому, что результирующие напряжения в материале существенно отличаются от напряжений, определяемых расчетом. При неблагоприятном распределении напряжений (например, при результирующем поле, плоскостном или объемном с нормальными напряжениями одного знака) развитие пластических деформаций может оказаться затрудненным, в результате чего появится опасность хрупкого разрушения.

Начальные напряжения приводят к повышению деформации, как бы снижая модуль упругости элемента, что может сказаться неблагоприятно на устойчивости при продольном изгибе. Борьба с начальными напряжениями ведется преимущественно конструктивными мероприятиями и соответствующим ведением технологического процесса при изготовлении металлических конструкций (при сварке и т. п.).

Предварительное напряжение, создаваемое в конструкциях с целью повышения ее эффективности, также является начальным напряжением.

Рис. Начальные напряжения

а - напряжения в балке двутаврового сечения (1 - начальные напряжения; 2 - напряжения от внешней нагрузки; 3 - суммарные напряжения при образовании шарнира пластичности); б - прогибы балки (1 - при отсутствии начальных напряжений; 2 - при наличии начальных напряжений); в - повышение несущей способности балок созданием предварительного напряжения; σо - предварительное напряжение; R - расчетное сопротивление; Р1 - максимальная нагрузка без предва­рительного напряжения; Р2 - то же, с предварительным напряжением

 

Если в конструкции искусственным путем создать напряжение обратного знака напряжениям от нагрузки, то при действии нагрузки сначала прорабатываются предварительные напряжения, а затем развиваются напряжения от нагрузки (в). В результате протяженность упругой работы материала увеличивается и несущая способность конструкции повышается.

Создавая предварительное напряжение, можно повысить несущую способность и жесткость конструкции, уменьшить перемещения, повысить усталостную прочность.

 

2.6 Работа стали при сложном напряженном состоянии

Сложное напряженное состояние характеризуется наличием двух или трех главных нормальных напряжений s1, s2 и s3, действующих одновременно (рис. 2.4). Если при одноосном напряженном состоянии (s1 ¹ 0; s2 = s3 = 0) пластические деформации развиваются при напряжениях, равных пределу текучести, то при сложном напряженном состоянии переход в пластическое состояние зависит от знака и соотношения действующих напряжений.

При однозначном поле напряжений, когда все напряжения либо растягиваю­щие, либо сжимающие, напряжения s 2 и s 3 сдерживают развитие деформаций в направлении напряжения s 1. В этом случае развитие пластических деформаций запаздывает, предел текучести повышается, а протяженность площадки текучести уменьшается, возникает опасность хрупкого разрушения.

Рис. 2.4 - Сложное напряженное состояние

При разнозначных напряжениях (сжатие в одном и растяжение в другом направлении) наблюдается обратная картина. Пластические деформации начинаются раньше, чем главные напряжения достигли предела текучести одноосного нагружения. Сталь становится как бы более пластичной.

То же самое при двухосном напряженном состоянии (рис. 2.5).

1 – σ1σ2 < 0; 2 - σ1σ2 > 0; 3 - σ2 = 0

Рис. 2.5 - Работа стали при плоском напряженном состоянии

 

Явление текучести можно представить как процесс изменения формы тела без изменения его объема. Удельная энергия изменения формы при сложном напряженном состоянии будет равна соответствующей энергии одноосного напряженного состояния, для которого напряжение перехода стали в пластическую стадию известно и равно пределу текучести σу. Следовательно, условие перехода стали в пластическую стадию при сложном напряженном состоянии:

.

Левую часть этого выражения называют приведенным напряжением. Приведенное напряжение при плоском напряженном состоянии равно:

.

 

2.7 Концентрация напряжений

В местах искажения сечения (у отверстий, выточек, надрезов, утолщений и т. п.) происходит искривление линий силового потока и их сгущение около пре­пятствий (рис. 2.6), что приводит к повышению напряжений в этих местах.

Рис.2.6. Траектория и концентрация напряжений у мест резкого изменения формы элемента

а -около отверстий; б -около трещины; в -в сварном соединении лобовыми швами

 

Отношение максимального напряжения в местах концентрации к номинальному, равномерно распределенному по ослабленному сечению, называется коэффициентом концентрации. Коэффициент концентрации у круглых отверстий и полукруглых выточек имеет значение 2-3. В местах острых надрезов оно выше и тем больше, чем меньше радиус кривизны надреза и чем гуще собирается в этих местах силовой поток; коэффициент концентрации в этом случае достигает значения 6-9.

Развитие пластических деформаций и разрушение при равномерном распределении напряжений происходят под воздействием касательных напряжений, наибольшее значение которых возникает на плоскостях, наклонных под углом 45° к действующей силе (зона 1). При резком перепаде напряжений (зона 2) общие сдвиговые деформации происходить не могут (из-за задержки соседними, менее напряженными участками), поэтому в этих областях металл разрушается путем отрыва по плоскостям, нормальным к действующей силе.

При статических нагрузках и нормальной температуре концентрация напряжений существенного влияния на несущую способность не оказывает (не учитывая некоторого повышения разрушающей нагрузки). Поэтому при расчетах элементов металлических конструкций при такого вида воздействиях их влияние на прочность не учитывается.

При понижении температуры прочность на разрыв гладких образцов повышается во всем диапазоне отрицательных температур; прочность же образцов с надрезом повышается до некоторой отрицательной температуры, а затем понижается.

При длительном воздействии нагрузки сопротивление разрушению понижается.

Испытаниями установлено, что конструкции из низколегированных, особенно термоупрочненных сталей сопротивляются разрушению лучше, чем малоуглеродистые стали.

 

2.8 Основы расчета на прочность центрально растянутых или сжатых элементов

Предполагается, что напряжения в поперечном сечении таких элементов распределяются равномерно. Для обеспечения несущей способности таких элементов необходимо, чтобы эти напряжения от расчетных нагрузок в сечении с наименьшей площадью не превышали расчетного сопротивления.

В соответствии с основным неравенством первого предельного состояния имеем:

где N- продольная сила в стержне, определяемая от расчетных нагрузок;

Anплощадь нетто поперечного сечения элемента;

R— расчетное сопротивление, принимаемое равным Ry , если в стержне не допускается развитие пластических деформаций; если же условиями эксплуатации конструкции пластические деформации допустимы, то R равняется наибольшему из двух значений Ry и Ru/gu(здесь Ry и Ruрасчетные сопротивления материала соответственно по пределу текучести и по временному сопротивлению;

g u = 1,3 — коэффициент надежности по материалу при расчете конструкций по временному сопротивлению).

Проверка по второму предельному состоянию сводится к ограничению удлинений (укорочений) стержня от нормативных нагрузок

где Nn - продольная сила в стержне от нормативных нагрузок;

l - расчетная длина стержня, равная расстоянию между точками приложения нагрузки к стержню;

Е -модуль упругости;

А- площадь брутто поперечного сечения стержня;

D - предельная величина удлинения (укорочения).


Дата добавления: 2018-11-24; просмотров: 512; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!